Monotonicity of solutions for some nonlocal elliptic problems in half-spaces
Autor: | Begoña Barrios, L. Del Pezzo, Jorge García-Melián, Alexander Quaas |
---|---|
Rok vydání: | 2017 |
Předmět: |
Matemáticas
45M20 Applied Mathematics 010102 general mathematics purl.org/becyt/ford/1.1 [https] Monotonic function Function (mathematics) 01 natural sciences Matemática Pura purl.org/becyt/ford/1 [https] 010101 applied mathematics Combinatorics Mathematics - Analysis of PDEs Bounded function FOS: Mathematics 35S15 0101 mathematics Fractional Laplacian CIENCIAS NATURALES Y EXACTAS Analysis Analysis of PDEs (math.AP) 47G10 Mathematics |
Zdroj: | CONICET Digital (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas instacron:CONICET |
ISSN: | 1432-0835 0944-2669 |
DOI: | 10.1007/s00526-017-1133-9 |
Popis: | In this paper we consider classical solutions $u$ of the semilinear fractional problem $(-\Delta)^s u = f(u)$ in $\mathbb{R}^N_+$ with $u=0$ in $\mathbb{R}^N \setminus \mathbb{R}^N_+$, where $(-\Delta)^s$, $00\}$ is the half-space and $f\in C^1$ is a given function. With no additional restriction on the function $f$, we show that bounded, nonnegative, nontrivial classical solutions are indeed positive in $\mathbb{R}^N_+$ and verify $$ \frac{\partial u}{\partial x_N}>0 \quad \hbox{in } \mathbb{R}^N_+. $$ This is in contrast with previously known results for the local case $s=1$, where nonnegative solutions which are not positive do exist and the monotonicity property above is not known to hold in general even for positive solutions when $f(0) Comment: 18 pages |
Databáze: | OpenAIRE |
Externí odkaz: |