Automatic face recognition with well-calibrated confidence measures

Autor: Charalambos Eliades, Pavel Král, Harris Papadopoulos, Ladislav Lenc
Rok vydání: 2018
Předmět:
Zdroj: Machine Learning. 108:511-534
ISSN: 1573-0565
0885-6125
Popis: V oblasti automatického rozpoznávání obličejů (AFR) byla vyvinuta celá řada metod, které dosahují vynikající úspěšnosti v případě kontrolovaných podmínek. Pokud podmínky nejsou kontrolované nebo jsou kontrolované jen v omezené míře, je úspěšnost významně snížena. Poskytnutí informace indikující pravděpodobnost, jestli je výsledek rozpoznání správný, je tedy velmi žádoucí. Tato práce se zabývá použitím konformního prediktoru (CP), který umožní k výstupu AFR metod přidat dobře kalibrované míry důvěry. CP je kombinován s klasifikátory založenými na deskriptorech POEM a SIFT. Dále je použita vážená kombinace obou klasifikátorů. Porovnáváme úspěšnost pěti způsobů výpočtu míry nonkonformity. Many Automatic face recognition (AFR) methods achieve a high recognition accuracy when the environment is well-controlled. In the case of moderately controlled or fully uncontrolled environments however, the performance of most techniques is dramatically reduced. As a result, the provision of some kind of indication of the likelihood of a recognition being correct is a desirable property of AFR techniques. This work investigates the application of the conformal prediction (CP) framework for extending the output of AFR techniques with well-calibrated measures of confidence. In particular we combine CP with one classifier based on POEM descriptors, one classifier based on SIFT descriptors, and a weighted combination of the similarities computed by the two. We examine and compare the performance of five nonconformity measures.
Databáze: OpenAIRE