Cyclotomic Identity Testing and Applications

Autor: James Worrell, Nikhil Balaji, Mahsa Shirmohammadi, Sylvain Perifel
Přispěvatelé: Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2021
Předmět:
Zdroj: ISSAC
ISSAC '21: International Symposium on Symbolic and Algebraic Computation
ISSAC '21: International Symposium on Symbolic and Algebraic Computation, Jul 2021, Virtual Event Russian Federation, France. pp.35-42, ⟨10.1145/3452143.3465530⟩
DOI: 10.1145/3452143.3465530
Popis: We consider the cyclotomic identity testing (CIT) problem: given a polynomial $f(x_1,\ldots,x_k)$, decide whether $f(\zeta_n^{e_1},\ldots,\zeta_n^{e_k})$ is zero, where $\zeta_n = e^{2\pi i/n}$ is a primitive complex $n$-th root of unity and $e_1,\ldots,e_k$ are integers, represented in binary. When $f$ is given by an algebraic circuit, we give a randomized polynomial-time algorithm for CIT assuming the generalised Riemann hypothesis (GRH), and show that the problem is in coNP unconditionally. When $f$ is given by a circuit of polynomially bounded degree, we give a randomized NC algorithm. In case $f$ is a linear form we show that the problem lies in NC. Towards understanding when CIT can be solved in deterministic polynomial-time, we consider so-called diagonal depth-3 circuits, i.e., polynomials $f=\sum_{i=1}^m g_i^{d_i}$, where $g_i$ is a linear form and $d_i$ a positive integer given in unary. We observe that a polynomial-time algorithm for CIT on this class would yield a sub-exponential-time algorithm for polynomial identity testing. However, assuming GRH, we show that if the linear forms~$g_i$ are all identical then CIT can be solved in polynomial time. Finally, we use our results to give a new proof that equality of compressed strings, i.e., strings presented using context-free grammars, can be decided in randomized NC.
Databáze: OpenAIRE