Preconditioners for spectral element methods for elliptic and parabolic problems
Autor: | Pankaj Biswas, G. Naga Raju, Pravir Dutt |
---|---|
Rok vydání: | 2008 |
Předmět: |
Spectrally equivalent
Elliptic Partial differential equation Preconditioner Applied Mathematics Numerical analysis Mathematical analysis Separation of variables Computer Science::Numerical Analysis Mathematics::Numerical Analysis Computational Mathematics Elliptic curve Quadratic form Element (category theory) Spectral method Parabolic Mathematics |
Zdroj: | Journal of Computational and Applied Mathematics. 215:152-166 |
ISSN: | 0377-0427 |
DOI: | 10.1016/j.cam.2007.03.030 |
Popis: | In this paper we propose preconditioners for spectral element methods for elliptic and parabolic problems. These preconditioners are constructed using separation of variables and are easy to invert. Moreover they are spectrally equivalent to the quadratic forms which they are used to approximate. |
Databáze: | OpenAIRE |
Externí odkaz: |