The Control of an Invasive Bivalve, Corbicula fluminea, Using Gas Impermeable Benthic Barriers in a Large Natural Lake

Autor: S. Geoffrey Schladow, John E. Reuter, Sudeep Chandra, Katie J. Webb, Marion E. Wittmann, Brant C. Allen
Rok vydání: 2012
Předmět:
Zdroj: Environmental Management. 49:1163-1173
ISSN: 1432-1009
0364-152X
DOI: 10.1007/s00267-012-9850-5
Popis: Anoxia can restrict species establishment in aquatic systems and the artificial promotion of these conditions can provide an effective control strategy for invasive molluscs. Low abundances (2-20 m(-2)) of the nonnative bivalve, Asian clam (Corbicula fluminea), were first recorded in Lake Tahoe, CA-NV in 2002 and by 2010 nuisance-level population densities (10,000 m(-2)) were observed. A non-chemical control method using gas impermeable benthic barriers to reduce dissolved oxygen (DO) concentrations available to C. fluminea was tested in this ultra-oligotrophic natural lake. In 2009, the impact of ethylene propylene diene monomer (EPDM) sheets (9 m(2), n = 6) on C. fluminea beds was tested on 1-7 day intervals over a 56 day period (August-September). At an average water temperature of 18 °C, DO concentrations under these small barriers were reduced to zero after 72 h resulting in 100 % C. fluminea mortality after 28 days. In 2010, a large EPDM barrier (1,950 m(2)) was applied to C. fluminea populations for 120 days (July-November). C. fluminea abundances were reduced over 98 % after barrier removal, and remained significantly reduced (90 %) 1 year later. Non-target benthic macroinvertebrate abundances were also reduced, with variable taxon-specific recolonization rates. High C. fluminea abundance under anoxic conditions increased the release of ammonium and soluble reactive phosphorus from the sediment substrate; but levels of unionized ammonia were low at 0.004-0.005 mg L(-1). Prolonged exposure to anoxia using benthic barriers can provide an effective short term control strategy for C. fluminea.
Databáze: OpenAIRE