A linear optimization oracle for zonotope computation
Autor: | Antoine Deza, Lionel Pournin |
---|---|
Přispěvatelé: | Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire d'Informatique de Paris-Nord (LIPN), Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Control and Optimization
Linear programming Duality (mathematics) Polytope 0102 computer and information sciences [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] 01 natural sciences Oracle Set (abstract data type) Combinatorics Mathematics - Metric Geometry TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] FOS: Mathematics Mathematics - Combinatorics Mathematics::Metric Geometry 0101 mathematics Mathematics - Optimization and Control ComputingMilieux_MISCELLANEOUS Mathematics Mathematics::Combinatorics Mathematics::Commutative Algebra 010102 general mathematics Metric Geometry (math.MG) Computer Science Applications Vertex (geometry) Computational Mathematics Computational Theory and Mathematics Hyperplane Counting problem Optimization and Control (math.OC) 010201 computation theory & mathematics Combinatorics (math.CO) Geometry and Topology [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] MathematicsofComputing_DISCRETEMATHEMATICS |
Zdroj: | Computational Geometry Computational Geometry, Elsevier, In press, 100, pp.101809. ⟨10.1016/j.comgeo.2021.101809⟩ |
ISSN: | 0925-7721 |
DOI: | 10.1016/j.comgeo.2021.101809⟩ |
Popis: | A class of counting problems ask for the number of regions of a central hyperplane arrangement. By duality, this is the same as counting the vertices of a zonotope. We give several efficient algorithms, based on a linear optimization oracle, that solve this and related enumeration problems. More precisely, our algorithms compute the vertices of a zonotope from the set of its generators and inversely, recover the generators of a zonotope from its vertices. A variation of the latter algorithm also allows to decide whether a polytope, given as its vertex set, is a zonotope and when it is not, to compute its greatest zonotopal summand. Comment: 22 pages, 2 figures |
Databáze: | OpenAIRE |
Externí odkaz: |