An adaptive numerical strategy for the medium-frequency analysis of Helmholtz's problem
Autor: | Pierre Ladevèze, Louis Kovalevsky, Benjamin Sourcis, Béatrice Faverjon, Hervé Riou |
---|---|
Přispěvatelé: | Laboratoire de Mécanique et Technologie (LMT), École normale supérieure - Cachan (ENS Cachan)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] (LaMCoS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Chaire de la Fondation EADS 'Techniques Avancées en Calcul des Structures', EADS - European Aeronautic Defense and Space, Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Mathematical optimization
Acoustics and Ultrasonics Discretization Helmholtz equation Differential equation 010103 numerical & computational mathematics Degrees of freedom (mechanics) 01 natural sciences symbols.namesake Applied mathematics Medium-frequency 0101 mathematics acoustics Mathematics [PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph] [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] variational theory of complex rays Applied Mathematics [SPI.MECA.VIBR]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph] [PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] 010101 applied mathematics Vibration Range (mathematics) Amplitude Helmholtz free energy symbols adaptive numerical strategy |
Zdroj: | Journal of Computational Acoustics Journal of Computational Acoustics, World Scientific Publishing, 2012, 20 (01), ⟨10.1142/S0218396X11004481⟩ Journal of Computational Acoustics, World Scientific Publishing, 2012, 20 (1), pp.1250001-1250027. ⟨10.1142/S0218396X11004481⟩ Journal of Computational Acoustics, 2012, 20 (01), ⟨10.1142/S0218396X11004481⟩ |
ISSN: | 0218-396X |
Popis: | International audience; The variational theory of complex rays (VTCR) is a wave-based predictive numerical tool for medium-frequency problems. In order to describe the dynamic field variables within the substruc-tures, this approach uses wave shape functions which are exact solutions of the governing differential equation. The discretized parameters are the number of substructures (h) and the number of wave-bands (p) which describe the amplitude portraits. Its capability to produce an accurate solution with only a few degrees of freedom and the absence of pollution error make the VTCR a suitable numerical strategy for the analysis of vibration problems in the medium-frequency range. This approach has been developed for structural and acoustic vibration problems. In this paper, an error indicator which characterizes the accuracy of the solution is introduced and is used to define an adaptive version of the VTCR. Numerical illustrations are given. |
Databáze: | OpenAIRE |
Externí odkaz: |