Thermal and electrochemical properties of PEO-LiTFSI-Pyr14TFSI-based composite cathodes, incorporating 4 V-class cathode active materials
Autor: | Giovanni Battista Appetecchi, Stefano Passerini, Mario Joost, Martin Winter, Guk-Tae Kim, Morten Wetjen |
---|---|
Přispěvatelé: | Appetecchi, G. B. |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
chemistry.chemical_classification
Materials science Renewable Energy Sustainability and the Environment Inorganic chemistry Pyr14TFSI ionic liquid Energy Engineering and Power Technology Electrolyte Polymer Current collector Electrochemistry Cathode Corrosion law.invention Anode Li(Ni0.8Co0.15Al0.05)O2 (NCA) Li(Ni1/3Co1/3Mn1/3)O2 (NCM) 4 V-class composite cathode Lithium metal polymer battery chemistry law Electrode Electrical and Electronic Engineering Physical and Theoretical Chemistry |
Zdroj: | Journal of Power Sources |
ISSN: | 0378-7753 |
DOI: | 10.1016/j.jpowsour.2013.08.037 |
Popis: | Poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI-Pyr14TFSI)-based 4 V-class composite cathodes, incorporating either Li(Ni1/3Co1/3Mn1/3)O 2 or Li(Ni0.8Co0.15Al0.05)O 2 were prepared by a hot-pressing process and successively investigated in terms of their morphological, thermal, and electrochemical properties. Thereby, excellent mechanical and thermal properties could be demonstrated for all composite cathodes. The electrochemical performance of truly dry all-solid-state Li/P(EO)10LiTFSI-(Pyr14TFSI) 2/composite cathode batteries at temperatures as low as 40 C revealed high delivered capacities. However, in comparison with LiFePO4, the 4 V-class composite cathodes also indicated much lower capacity retention. In-depth investigations on the interfacial properties of Li(Ni 0.8Co0.15Al0.05)O2 composite cathodes revealed a strong dependence on the anodic cut-off potential and the presence of current flow through the cell, whereby different degradation mechanisms could be characterized upon cycling, according to which the finite growth of a surface films at both electrode/polymer electrolyte interfaces inhibited continuous decomposition of the polymer electrolyte even at potentials as high as 4.3 V. Moreover, the presence of Pyr14TFSI in the 4 V-class composite cathodes sustainably reduced the cathode interfacial resistance and presumably diminished the corrosion of the aluminum current collector. © 2013 Elsevier B.V. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |