The disk of FU Orionis viewed with MATISSE/VLTI

Autor: F. Lykou, P. Ábrahám, L. Chen, J. Varga, Á. Kóspál, A. Matter, M. Siwak, Zs. M. Szabó, Z. Zhu, H. B. Liu, B. Lopez, F. Allouche, J.-C. Augereau, P. Berio, P. Cruzalèbes, C. Dominik, Th. Henning, K.-H. Hofmann, M. Hogerheijde, W. J. Jaffe, E. Kokoulina, S. Lagarde, A. Meilland, F. Millour, E. Pantin, R. Petrov, S. Robbe-Dubois, D. Schertl, M. Scheuck, R. van Boekel, L. B. F. M. Waters, G. Weigelt, S. Wolf
Přispěvatelé: Low Energy Astrophysics (API, FNWI), Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Rok vydání: 2022
Předmět:
Protoplanetary disks
[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]
Astronomy
Astrophysics::High Energy Astrophysical Phenomena
FOS: Physical sciences
Astronomy and Astrophysics
Astrophysics::Cosmology and Extragalactic Astrophysics
Circumstellar matter
Astrophysics - Astrophysics of Galaxies
Infrared: stars
Stars: individual: FU Ori
Astrophysics - Solar and Stellar Astrophysics
[SDU]Sciences of the Universe [physics]
Space and Planetary Science
Astrophysics of Galaxies (astro-ph.GA)
Techniques: interferometric
Astrophysics::Solar and Stellar Astrophysics
Radiative transfer
Astrophysics::Earth and Planetary Astrophysics
Astrophysics - Instrumentation and Methods for Astrophysics
Instrumentation and Methods for Astrophysics (astro-ph.IM)
Astrophysics::Galaxy Astrophysics
Solar and Stellar Astrophysics (astro-ph.SR)
Zdroj: Astronomy & Astrophysics, 663:A86
Astronomy & Astrophysics, 663:A86. EDP Sciences
Astronomy & Astrophysics, 663, pp. 1-17
Astronomy & Astrophysics, 663, 1-17
Astronomy and Astrophysics-A&A
Astronomy and Astrophysics-A&A, 2022, 663, ⟨10.1051/0004-6361/202142788⟩
Astronomy & Astrophysics
ISSN: 1432-0746
0004-6361
DOI: 10.1051/0004-6361/202142788
Popis: The disk of FU Orionis is marginally resolved with MATISSE, suggesting that the region emitting in the thermal infrared is rather compact. An upper limit of $\sim1.3\pm0.1$ mas (in $L$) can be given for the diameter of the disk region probed in the $L$ band, corresponding to 0.5 au at the adopted Gaia EDR3 distance. This represents the hot, gaseous region of the accretion disk. The $N$-band data indicate that the dusty passive disk is silicate-rich. Only the innermost region of said dusty disk is found to emit strongly in the $N$ band, and it is resolved at an angular size of $\sim5$ mas, which translates to a diameter of about 2 au. The observations therefore place stringent constraints for the outer radius of the inner accretion disk. Dust radiative transfer simulations with RADMC-3D provide adequate fits to the spectral energy distribution from the optical to the submillimeter and to the interferometric observables when opting for an accretion rate $\dot{M}\sim 2\times 10^{-5}\, M_\odot$ yr$^{-1}$ and assuming $M_*=0.6\, M_\odot$. Most importantly, the hot inner accretion disk's outer radius can be fixed at 0.3 au. The outer radius of the dusty disk is placed at 100 au, based on constraints from scattered-light images in the literature. The dust mass contained in the disk is $2.4\times10^{-4}\, M_\odot$, and for a typical gas-to-dust ratio of 100, the total mass in the disk is approximately 0.02 $M_\odot$. We did not find any evidence for a nearby companion in the current interferometric data, and we tentatively explored the case of disk misalignment. For the latter, our modeling results suggest that the disk orientation is similar to that found in previous imaging studies by ALMA. Should there be an asymmetry in the very compact, inner accretion disk, this might be resolved at even smaller spatial scales ($\leq1$ mas).
Comment: 17 pages, 14 figures, to be published in Astronomy & Astrophysics
Databáze: OpenAIRE