Cotton as Precursor for the Preparation of Porous Cellulose Adsorbers

Autor: Daniel Baumert, Mathias Ulbricht, Alexandra Wittmar
Rok vydání: 2021
Předmět:
Zdroj: Macromolecular Materials and Engineering. 306:2000778
ISSN: 1439-2054
1438-7492
DOI: 10.1002/mame.202000778
Popis: Natural biopolymer-based porous spherical adsorbers from cellulose have good efficiency for removal of metal ion pollutants from aqueous media. However, high purity celluloses, most commonly used as precursors for preparation of the adsorber spheres, require complex synthesis processes, which consume energy and chemicals, and may thus lead to other types of pollution. In this work, the possibility to prepare cellulose-based porous spherical adsorbers directly from cotton, using an ionic liquid-based platform is analyzed in detail. The dissolution of microcrystalline cellulose (MCC), as reference, and of cotton in ionic liquid-based solvents and the properties of the obtained polymer solutions are investigated in order to evaluate their processability toward porous macrospheres using the drop shaping cum non-solvent induced phase separation process. The properties of the prepared spheres are assessed. The dissolution of cotton is more difficult than the dissolution of MCC and the formed cotton-based solutions are considerably more viscous, which makes their processability possible only after careful adjustment of the cotton solution concentration. The maximum adsorption capacities toward Cu²⁺ are ≈110 and ≈72 mg/g for the porous cotton-based spheres prepared from 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]):dimethylsulfoxide (DMSO) = 2:1 and 1-butyl-3-methylimidazolium acetate ([Bmim][OAc]):DMSO = 2:1 solutions, respectively.
Databáze: OpenAIRE