Extramartian forcing of Mars seismicity at Rieger periods
Autor: | M. Omerbashich |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
ISSN: | 0004-6361 |
DOI: | 10.5281/zenodo.4916793 |
Popis: | Studies of the InSight mission seismic data show preference to higher frequencies, localization (to the Cerberus Fossae region), and annual variation — the features which, combined, are uncharacteristic of earthquakes or moonquakes but are typical of a resonator locked to an external forcer. I here report results from spectral analyses of InSight B- and C-quality marsquakes occurrences. The Rieger period PRg=154 days, as the only 99%-significant spectral peak in the 1–6 months band, indeed dominates this (most energetic) band and is characterized by a very high (>>12) fidelity Φ=2.8·106. PRg is currently one of the commonly reported periodicities in our Solar system, observed in the interplanetary magnetic field and most heliophysics data types during solar maxima. The modular Rieger Type Periodicities: 1/2 PRg and 1/3 PRg, are found also dominating Martian seismicity, at 89%–67% lowered significance levels but with Φ>>12 as well. Therefore, a primary underlying process drives both heliophysics and areophysics, causing the sampled tidal-resonant response. Since PRg is discernable in post-1953 solar activity only (solar cycles 19–24), Mars is tectonically inactive. This observation of the temporary Rieger-forcing extending to Mars indicates an emerging or alternating strong magnetic field, possibly Jovian. * Supplementary data: https://doi.org/10.6084/m9.figshare.14850399 * Paper doublet with https://doi.org/10.5281/zenodo.5069074 * For the expanded composite of this and the accompanying paper's peer-reviewed (revised) versions, see https://doi.org/10.48550/arXiv.2301.10800 {"references":["Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F. (2012) Is there a planetary influence on solar activity? Astron. Astroph. 548:A88. https://doi.org/10.1051/0004-6361/201219997","Bai T. and Cliver E. W. (1990) A 154 day periodicity in the occurrence rate of proton flares. Astrophys. J. 363:299-309. https://doi.org/10.1086/169342","Bai T. and Sturrock P. A. (1987) The 152-day periodicity of the solar flare occurrence rate. Nature 327, 601-604. https://doi.org/10.1038/327601a0","Bai, T. (2003) Hot Spots for Solar Flares Persisting for Decades: Longitude Distributions of Flares of Cycles 19-23. Astrophys. J. 585:1114-1123. https://dx.doi.org/10.1086/346152","Banerdt, W.B., Smrekar, S.E., Banfield, D. et al. (2020) Initial results from the InSight mission on Mars. Nat. Geosci. 13:183–189. https://doi.org/10.1038/s41561-020-0544-y","Bogart R. S. and Bai T. (1985) Confirmation of a 152 day periodicity in the occurrence of solar flares inferred from microwave data. Astrophys. J. 299:L51–L55.","Cane, H.V., Richardson, I.G., von Rosenvinge, T.T. (1998) Interplanetary magnetic field periodicity of ∼153 days. Geophys. Res. Lett. 25(24):4437-4440. https://doi.org/10.1029/1998GL900208","Ceylan, S., Clinton, J.F., Giardini, D. et al. (2021a) Companion guide to the marsquake catalog from InSight, Sols 0–478: Data content and non-seismic events. Phys. Earth Planet. Inter. 310:106597. https://doi.org/10.1016/j.pepi.2020.106597","Ceylan, S., Clinton, J.F., Horleston, A., et al. (2021b) The Seismicity on Mars as Recorded by Insight's Marsquake Service. Presentation at the Annual Meeting of the Seismological Society of America, 23 Apr. https://seismosoc.secure-platform.com/a/solicitations/24/sessiongallery/380/application/6767, https://www.seismosoc.org/news/seismicity-on-mars-full-of-surprises-in-first-continuous-year-of-data-collection, https://www.sciencedaily.com/releases/2021/04/210423130055.htm","Chowdhury, P., Ray, P.C., Ray, S. (2008) Periodicity of ~155 days in solar electron fluence. Indian J.Phys. 82:95-104.","Chowdhury, P., Kudela, K. Moon, YJ. (2016) A Study of Heliospheric Modulation and Periodicities of Galactic Cosmic Rays During Cycle 24. Sol. Phys. 291:581–602. https://doi.org/10.1007/s11207-015-0832-7","Clinton, J.F., Ceylan, S., van Driel, M., Giardini, D. et al., (2021) The Marsquake catalogue from InSight, sols 0–478. Phys. Earth Planet. Inter. 310:106595 (corrected Supplementary Table 2). https://doi.org/10.1016/j.pepi.2020.106595","Dimitropoulou, M., Moussas, X., & Strintzi, D. (2008) Enhanced Rieger type periodicities' detection in X-ray solar flares and statistical validation of Rossby waves' existence. Proc. Int. Astron. Union 4(S257):159-163. https://doi.org/10.1017/S1743921309029226","van Driel, M., Ceylan, S., Clinton, J. F., Giardini, D., Horleston, A., Margerin, L., et al. (2021) High‐frequency seismic events on Mars observed by InSight. J Geophys. Res. Planets 126:e2020JE006670. https://doi.org/10.1029/2020JE006670","Ferrazzini, V., Aki, K. (1987) Slow waves trapped in a fluid‐filled infinite crack: Implication for volcanic tremor. J. Geophys. Res. 92(B9):9215–9223. https://doi.org/10.1029/JB092iB09p09215","Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Dikpati, M., McIntosh, S.W. (2017) North–South Asymmetry in Rieger-type Periodicity during Solar Cycles 19–23. Astrophys. J. 845(2):137-148. https://dx.doi.org/10.3847/1538-4357/aa830a","Kurochkin, N.E. (1998) Transient periodicity in solar activity. Astron. Astrophys. Trans. 15(1-4):277-279. https://doi.org/10.1080/10556799808201781","Lorenz, R.D., Panning, M. (2018) Empirical recurrence rates for ground motion signals on planetary surfaces. Icarus 303:273-279. https://doi.org/10.1016/j.icarus.2017.10.008","Lorenz, R.D., Nakamura, Y., Murphy, J.R. (2017) Viking‐2 seismometer measurements on Mars: PDS data archive and meteorological applications. Earth Space Sci. 4:681–688. https://doi.org/10.1002/2017EA000306","Moore, K.M., Yadav, R.K., Kulowski, L., Cao, H., Bloxham, J., Connerney, J.E.P., Kotsiaros, S., Jørgensen, J.L., Merayo, J.M.G., Stevenson, D.J., Bolton, S.J., Levin, S.M. (2018) A complex dynamo inferred from the hemispheric dichotomy of Jupiter's magnetic field. Nature 561:76–78. https://doi.org/10.1038/s41586-018-0468-5","Odintsov, S., Boyarchuk, K., Georgieva, K., Kirov, B., Atanasov, D. (2006) Long-period trends in global seismic and geomagnetic activity and their relation to solar activity. Phys. Chem. Earth 31(1–3):88-93. https://doi.org/10.1016/j.pce.2005.03.004","Omerbashich, M. (2021) Non-marine tetrapod extinctions solve extinction periodicity mystery. Hist. Biol. 34 (29 March). https://doi.org/10.1080/08912963.2021.1907367","Omerbashich, M. (2020a) Earth body resonance. J. Geophys. 63:15–29. https://n2t.net/ark:/88439/x020219","Omerbashich, M. (2020b) Moon body resonance. J. Geophys. 63:30–42. https://n2t.net/ark:/88439/x034508","Omerbashich, M. (2007) Erratum due to journal error. Comp. Sci. Eng. 9(4):5–6. https://doi.org/10.1109/MCSE.2007.79; full text: https://arxiv.org/abs/math-ph/0608014","Omerbashich, M. (2006) Gauss–Vaníček Spectral Analysis of the Sepkoski Compendium: No New Life Cycles. Comp. Sci. Eng. 8(4):26–30. https://doi.org/10.1109/MCSE.2006.68","Özgüç, A., Ataç, T. (1994) The 73-day periodicity of the flare index during the current solar cycle 22. Sol. Phys. 150:339–346. https://doi.org/10.1007/BF00712895","Pagiatakis, S. (1999) Stochastic significance of peaks in the least-squares spectrum. J. Geod. 73:67-78. https://doi.org/10.1007/s001900050220","Pap, J., Tobiska, W.K., Bouwer, S.D. (1990) Periodicities of solar irradiance and solar activity indices, I. Sol. Phys. 129:165–189. https://doi.org/10.1007/BF00154372","Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (2007) Numerical Recipes: The Art of Scientific Computing (3rd Ed.). Cambridge University Press, United Kingdom. ISBN 9780521880688","Ramstad, R., Brain, D.A., Dong, Y., Espley, J., Halekas, J., Jakosky, B. (2020) The global current systems of the Martian induced magnetosphere. Nat. Astron. 4:979–985. https://doi.org/10.1038/s41550-020-1099-y","Rieger, E., Share, G.H., Forrest, D.J., Kanbach, G., Reppin, C., Chupp, E.L. (1984) A 154-day periodicity in the occurrence of hard solar flares? Nature 312:623–625. https://doi.org/10.1038/312623a0","Simpson, J.F. (1968) Solar activity as a triggering mechanism for earthquakes. Earth Planet. Sci. Lett. 3:417-425. https://doi.org/10.1016/0012-821X(67)90071-4","Suemoto, Y., Ikeda, T., Tsuji, T. (2020) Temporal variation and frequency dependence of seismic ambient noise on Mars from polarization analysis. Geophys. Res. Lett. 47:e2020GL087123. https://doi.org/10.1029/2020GL087123","Taylor, J., Hamilton, S. (1972) Some tests of the Vaníček Method of spectral analysis. Astrophys. Space Sci. 17:357–367. https://doi.org/10.1007/BF00642907","Vaníček, P. (1969) Approximate Spectral Analysis by Least-Squares Fit. Astrophys. Space Sci. 4(4):387–391. https://doi.org/10.1007/BF00651344","Vaníček, P. (1971) Further Development and Properties of the Spectral Analysis by Least-Squares Fit. Astrophys. Space Sci. 12(1):10–33. https://doi.org/10.1007/BF00656134","Wells, D.E., Vaníček, P., Pagiatakis, S. (1985) Least squares spectral analysis revisited. Department of Geodesy & Geomatics Engineering Technical Report 84, University of New Brunswick, Canada. Link: http://www2.unb.ca/gge/Pubs/TR84.pdf"]} |
Databáze: | OpenAIRE |
Externí odkaz: |