Wavelets and partial differential equations for image denoising
Autor: | Benedetto Piccoli, Vittoria Bruni, Domenico Vitulano |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2006 |
Předmět: |
Discrete wavelet transform
Computer engineering. Computer hardware Ones Stationary wavelet transform Noise reduction MathematicsofComputing_NUMERICALANALYSIS ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Geometry Data_CODINGANDINFORMATIONTHEORY Wavelets wavelets Domain (mathematical analysis) Image (mathematics) TK7885-7895 Image restoration Wavelet Anàlisi de l'espai Restauración de imágenes Análisis del espacio scale space analysis Mathematics Wavelet transform QA75.5-76.95 Noise Restauració d'imatges Ondas Electronic computers. Computer science Computer Vision and Pattern Recognition Scale space analysis Algorithm Software |
Zdroj: | Dipòsit Digital de Documents de la UAB Universitat Autònoma de Barcelona ELCVIA: electronic letters on computer vision and image analysis; 2007: Vol.: 6 Núm.: 2; p. 36-53 ELCVIA Electronic Letters on Computer Vision and Image Analysis, Vol 6, Iss 2 (2007) |
Popis: | In this paper a wavelet based model for image de-noising is presented. Wavelet coefficients are modelled as waves that grow while dilating along scales. The model establishes a precise link between corresponding modulus maxima in the wavelet domain and then allows to predict wavelet coefficients at each scale from the first one. This property combined with the theoretical results about the characterization of singularities in the wavelet domain enables to discard noise. Significant structures of the image are well recovered while some annoying artifacts along image edges are reduced. Some experimental results show that the proposed approach outperforms the most recent and effective wavelet based denoising schemes. |
Databáze: | OpenAIRE |
Externí odkaz: |