Teixobactin kills bacteria by a two-pronged attack on the cell envelope
Autor: | Shukla, Rhythm, Lavore, Francesca, Maity, Sourav, Derks, Maik G.N., Jones, Chelsea R., Vermeulen, Bram J.A., Melcrová, Adéla, Morris, Michael A., Becker, Lea Marie, Wang, Xiaoqi, Kumar, Raj, Medeiros-Silva, João, van Beekveld, Roy A.M., Bonvin, Alexandre M.J.J., Lorent, Joseph H., Lelli, Moreno, Nowick, James S., MacGillavry, Harold D., Peoples, Aaron J., Spoering, Amy L., Ling, Losee L., Hughes, Dallas E., Roos, Wouter H., Breukink, Eefjan, Lewis, Kim, Weingarth, Markus, Sub NMR Spectroscopy, Sub Membrane Biochemistry & Biophysics, Sub Cell Biology, NMR Spectroscopy, Celbiologie, Membrane Biochemistry and Biophysics |
---|---|
Přispěvatelé: | Sub NMR Spectroscopy, Sub Membrane Biochemistry & Biophysics, Sub Cell Biology, NMR Spectroscopy, Celbiologie, Membrane Biochemistry and Biophysics, Molecular Biophysics |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Component
Target Protein Structure Secondary Pyrrolidines Nuclear Magnetic Resonance Drug Resistance Bacterial/drug effects Drug Resistance Anti-Bacterial Agents/chemistry Bacteria/cytology Lipids/chemistry Microbial Sensitivity Tests Molecular Dynamics Simulation Microscopy Atomic Force Elucidation Protein Structure Secondary Precursor lipid ii Depsipeptides/chemistry Cell Wall Solid-state Depsipeptides Drug Resistance Bacterial Humans Sugars/chemistry Staphylococcus-aureus General Nuclear Magnetic Resonance Biomolecular Cell Wall/drug effects Peptide antibiotics Microscopy Microbial Viability Multidisciplinary Bacteria Cell Membrane/drug effects Diphosphates/chemistry Cell Membrane Microbial Viability/drug effects Bacterial/drug effects Atomic Force Enduracididine Lipids Nmr Anti-Bacterial Agents Diphosphates Pyrrolidines/chemistry Sugars Analogs Biomolecular |
Zdroj: | Nature, 608(7922), 390. Nature Research Nature Nature, 608(7922), 390-396. Nature Publishing Group |
ISSN: | 0028-0836 |
DOI: | 10.1038/s41586-022-05019-y |
Popis: | Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1–3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a β-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates. |
Databáze: | OpenAIRE |
Externí odkaz: |