AI-based Volumetric Analysis of Liver Metastases Load in Neuroendocrine Neoplasm (NEN) Patients

Autor: Xin, Siyi
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: Background: Quantification of liver tumor load in patients with liver metastases from neuroendocrine neoplasms is essential for therapeutic management. However, accurate measurement of three-dimensional (3D) volumes is time-consuming and difficult to achieve. Even though the common criteria for assessing treatment response have simplified the measurement of liver metastases, the workload of following up patients with neuroendocrine liver metastases (NELMs) remains heavy for radiologists due to their increased morbidity and prolonged survival. Among the many imaging methods, gadoxetic acid (Gd-EOB)-enhanced magnetic resonance imaging (MRI) has shown the highest accuracy. Methods: 3D-volumetric segmentation of NELM and livers were manually performed in 278 Gd-EOB MRI scans from 118 patients. Eighty percent (222 scans) of them were randomly divided into training datasets and the other 20% (56 scans) were internal validation datasets. An additional 33 patients from a different time period, who underwent Gd-EOB MRI at both baseline and 12-month follow-up examinations, were collected for external and clinical validation (n = 66). Model measurement results (NELM volume; hepatic tumor load (HTL)) and the respective absolute (ΔabsNELM; ΔabsHTL) and relative changes (ΔrelNELM; ΔrelHTL) for baseline and follow-up-imaging were used and correlated with multidisciplinary cancer conferences (MCC) decisions (treatment success/failure). Three readers manually segmented MRI images of each slice, blinded to clinical data and independently. All images were reviewed by another senior radiologist. Results: The model’s performance showed high accuracy between NELM and liver in both internal and external validation (Matthew’s correlation coefficient (ϕ): 0.76/0.95, 0.80/0.96, respectively). And in internal validation dataset, the group with higher NELM volume (> 16.17 cm3) showed higher ϕ than the group with lower NELM volume (ϕ = 0.80 vs. 0.71; p = 0.0025). In the external validation dataset, all response variables (∆absNELM; ∆absHTL; ∆relNELM; ∆relHTL) reflected significant differences across MCC decision groups (all p < 0.001). The AI model correctly detected the response trend based on ∆relNELM and ∆relHTL in all the 33 MCC patients and showed the optimal discrimination between treatment success and failure at +56.88% and +57.73%, respectively (AUC: 1.000; P < 0.001). Conclusions: The created AI-based segmentation model performed well in the three-dimensional quantification of NELMs and HTL in Gd-EOB-MRI. Moreover, the model showed good agreement with the evaluation of treatment response of the MCC’s decision.
Hintergrund: Die Quantifizierung der Lebertumorlast bei Patienten mit Lebermetastasen von neuroendokrinen Neoplasien ist für die Behandlung unerlässlich. Eine genaue Messung des dreidimensionalen (3D) Volumens ist jedoch zeitaufwändig und schwer zu erreichen. Obwohl standardisierte Kriterien für die Beurteilung des Ansprechens auf die Behandlung die Messung von Lebermetastasen vereinfacht haben, bleibt die Arbeitsbelastung für Radiologen bei der Nachbeobachtung von Patienten mit neuroendokrinen Lebermetastasen (NELMs) aufgrund der höheren Fallzahlen durch erhöhte Morbidität und verlängerter Überlebenszeit hoch. Unter den zahlreichen bildgebenden Verfahren hat die Gadoxetsäure (Gd-EOB)-verstärkte Magnetresonanztomographie (MRT) die höchste Genauigkeit gezeigt. Methoden: Manuelle 3D-Segmentierungen von NELM und Lebern wurden in 278 Gd-EOB-MRT-Scans von 118 Patienten durchgeführt. 80% (222 Scans) davon wurden nach dem Zufallsprinzip in den Trainingsdatensatz eingeteilt, die übrigen 20% (56 Scans) waren interne Validierungsdatensätze. Zur externen und klinischen Validierung (n = 66) wurden weitere 33 Patienten aus einer späteren Zeitspanne des Multidisziplinäre Krebskonferenzen (MCC) erfasst, welche sich sowohl bei der Erstuntersuchung als auch bei der Nachuntersuchung nach 12 Monaten einer Gd-EOB-MRT unterzogen hatten. Die Messergebnisse des Modells (NELM-Volumen; hepatische Tumorlast (HTL)) mit den entsprechenden absoluten (ΔabsNELM; ΔabsHTL) und relativen Veränderungen (ΔrelNELM; ΔrelHTL) bei der Erstuntersuchung und der Nachuntersuchung wurden zum Vergleich mit MCC-Entscheidungen (Behandlungserfolg/-versagen) herangezogen. Drei Leser segmentierten die MRT-Bilder jeder Schicht manuell, geblindet und unabhängig. Alle Bilder wurden von einem weiteren Radiologen überprüft. Ergebnisse: Die Leistung des Modells zeigte sowohl bei der internen als auch bei der externen Validierung eine hohe Genauigkeit zwischen NELM und Leber (Matthew's Korrelationskoeffizient (ϕ): 0,76/0,95 bzw. 0,80/0,96). Und im internen Validierungsdatensatz zeigte die Gruppe mit höherem NELM-Volumen (> 16,17 cm3) einen höheren ϕ als die Gruppe mit geringerem NELM-Volumen (ϕ = 0,80 vs. 0,71; p = 0,0025). Im externen Validierungsdatensatz wiesen alle Antwortvariablen (∆absNELM; ∆absHTL; ∆relNELM; ∆relHTL) signifikante Unterschiede zwischen den MCC-Entscheidungsgruppen auf (alle p < 0,001). Das KI-Modell erkannte das Therapieansprechen auf der Grundlage von ∆relNELM und ∆relHTL bei allen 33 MCC-Patienten korrekt und zeigte bei +56,88% bzw. +57,73% eine optimale Unterscheidung zwischen Behandlungserfolg und -versagen (AUC: 1,000; P < 0,001). Schlussfolgerungen: Das Modell zeigte eine hohe Genauigkeit bei der dreidimensionalen Quantifizierung des NELMs-Volumens und der HTL in der Gd-EOB-MRT. Darüber hinaus zeigte das Modell eine gute Übereinstimmung bei der Bewertung des Ansprechens auf die Behandlung mit der Entscheidung des Tumorboards.
Databáze: OpenAIRE