Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro
Autor: | Philippe Ravassard, Varda Oron-Karni, Holger A. Russ, Leeat Anker-Kitai, Orr Friedman, Metsada Pasmanik-Chor, Ginat Toren, Chen Farhy, Shimon Efrat, Ayelet Lenz, Elad Sintov |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2011 |
Předmět: |
Anatomy and Physiology
Cellular differentiation Cell lcsh:Medicine Endocrine System Biology Tissue Culture Techniques Cell therapy Endocrinology Insulin-Secreting Cells medicine Insulin Humans RNA Small Interfering lcsh:Science Cells Cultured Cell Proliferation Diabetic Endocrinology geography Reporter gene Multidisciplinary geography.geographical_feature_category lcsh:R Cell Differentiation Diabetes Mellitus Type 1 Islet Cell biology Transplantation medicine.anatomical_structure Cell culture Medicine lcsh:Q Snail Family Transcription Factors Stem cell Research Article Developmental Biology Transcription Factors |
Zdroj: | PLoS ONE, Vol 6, Iss 9, p e25566 (2011) PLoS ONE |
ISSN: | 1932-6203 |
Popis: | Background Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD) cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT). Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells. Methodology/Principal Finding Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2) using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation. Conclusions/Significance These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug screening. |
Databáze: | OpenAIRE |
Externí odkaz: |