A machine learning methodology for the selection and classification of spontaneous spinal cord dorsum potentials allows disclosure of structured (non-random) changes in neuronal connectivity induced by nociceptive stimulation

Autor: Pablo Rudomín, Enrique Contreras-Hernández, Mario Martín, Javier Béjar, Silvio Glusman, Gennaro Esposito, Ulises Cortés, Diógenes Chávez
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Ciències de la Computació, Universitat Politècnica de Catalunya. KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
Rok vydání: 2015
Předmět:
Signal processing
Dorsum
Discovery and classification
Computer science
data analysis
Biomedical Engineering
Neuroscience (miscellaneous)
neural signal processing
Stimulation
Sensory system
Machine learning
computer.software_genre
capsaicin
lcsh:RC321-571
Neural networks (Computer science)
Informàtica::Aplicacions de la informàtica [Àrees temàtiques de la UPC]
Methods
medicine
lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry
Selection (genetic algorithm)
Spinal cord
Cord Dorsum Potentials
spontaneous neuronal activity
business.industry
spinal cord
Tractament del senyal
Computer Science Applications
machine learning
Nociception
medicine.anatomical_structure
Allodynia
sorting of spontaneous cord dorsum potentials
Neural Signals Processing
Hyperalgesia
Enginyeria biomèdica
Artificial intelligence
medicine.symptom
business
Neuroscience
computer
Medicina -- Informàtica
Zdroj: Frontiers in Neuroinformatics, Vol 9 (2015)
Recercat. Dipósit de la Recerca de Catalunya
instname
Frontiers in Neuroinformatics
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
ISSN: 1662-5196
Popis: Previous studies aimed to disclose the functional organization of the neuronal networks involved in the generation of the spontaneous cord dorsum potentials (CDPs) generated in the lumbosacral spinal segments used predetermined templates to select specific classes of spontaneous CDPs. Since this procedure was time consuming and required continuous supervision, it was limited to the analysis of two specific types of CDPs (negative CDPs and negative positive CDPs), thus excluding potentials that may reflect activation of other neuronal networks of presumed functional relevance. We now present a novel procedure based in machine learning that allows the efficient and unbiased selection of a variety of spontaneous CDPs with different shapes and amplitudes. The reliability and performance of the present method is evaluated by analyzing the effects on the probabilities of generation of different classes of spontaneous CDPs induced by the intradermic injection of small amounts of capsaicin in the anesthetized cat, a procedure known to induce a state of central sensitization leading to allodynia and hyperalgesia. The results obtained with the selection method presently described allowed detection of spontaneous CDPs with specific shapes and amplitudes that are assumed to represent the activation of functionally coupled sets of dorsal horn neurones that acquire different, structured configurations in response to nociceptive stimuli. These changes are considered as responses tending to adequate transmission of sensory information to specific functional requirements as part of homeostatic adjustments.
Databáze: OpenAIRE