An algorithmic method for checking global asymptotic stability of nonlinear polynomial systems with parameters
Autor: | Stelios Kotsios |
---|---|
Rok vydání: | 2014 |
Předmět: |
Lyapunov function
Equilibrium point Polynomial Dynamical systems theory Applied Mathematics Mathematical analysis Computational Mathematics Nonlinear system symbols.namesake Exponential stability ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION symbols Kharitonov's theorem Parametric statistics Mathematics |
Zdroj: | Applied Mathematics and Computation. 240:358-367 |
ISSN: | 0096-3003 |
DOI: | 10.1016/j.amc.2014.04.068 |
Popis: | An algorithm is presented here, for checking the global asymptotic stability of polynomial dynamical systems with parametric coefficients. It is based on the possibility of writing the polynomials, as sums of products of first degree polynomials, with artificial parametrical coefficients. By giving to all the parameters certain values, we ensure the positiveness of some quantities, constructing thereby proper Lyapunov functions, which guarantee the stability of the equilibrium point. © 2014 Elsevier Inc. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |