Nicotine-induced and depolarisation-induced glutamate release from hippocampus mossy fibre synaptosomes: two distinct mechanisms
Autor: | Alain Bloc, Victor Bancila, Yves Dunant, J. Miguel Cordeiro |
---|---|
Rok vydání: | 2009 |
Předmět: |
Male
Nicotine Cell Polarity/drug effects/physiology alpha7 Nicotinic Acetylcholine Receptor Hippocampus/drug effects/secretion/ultrastructure Synaptosomes/drug effects/secretion/ultrastructure Glutamic Acid Receptors Nicotinic Neurotransmission Biology Hippocampus Biochemistry Membrane Potentials ddc:616.89 Cellular and Molecular Neuroscience Glutamatergic Animals Rats Wistar Glutamic Acid/secretion Synaptosome Membrane potential Nicotine/pharmacology Synaptic vesicle membrane Glutamate receptor Cell Polarity ddc:616.8 Rats Mossy Fibers Hippocampal/drug effects/secretion/ultrastructure Receptors Nicotinic/metabolism Nicotinic agonist Mossy Fibers Hippocampal Excitatory postsynaptic potential Biophysics Membrane Potentials/drug effects/physiology Synaptosomes |
Zdroj: | Journal of Neurochemistry, Vol. 110, No 2 (2009) pp. 570-80 |
ISSN: | 1471-4159 0022-3042 |
DOI: | 10.1111/j.1471-4159.2009.06169.x |
Popis: | Hippocampus mossy fibre terminals activate CA3 pyramidal neurons via two distinct mechanisms, both quantal and glutamatergic: (i) rapid excitatory transmission in response to afferent action potentials and (ii) delayed and prolonged release following nicotinic receptor activation. These processes were analysed here using rat hippocampus mossy fibres synaptosomes. The relationships between synaptosome depolarisation and glutamate release were established in response to high-KCl and gramicidin challenges. Half-maximal release corresponded to a 52 mV depolarisation step. KCl-induced release was accompanied by transient dissipation of the proton gradient across synaptic vesicle membrane. Nicotine elicited a substantial glutamate release from mossy fibre synaptosomes (EC(50) 3.14 microM; V(max) 12.01 +/- 2.1 nmol glutamate/mg protein; Hill's coefficient 0.99). However, nicotine-induced glutamate release was not accompanied by any change in the membrane potential or in the vesicular proton gradient. The effects of acetylcholine (200 microM) were similar to those of nicotine (25 microM). Nicotinic alpha7 receptors were evidenced by immuno-cytochemistry on the mossy fibre synaptosome plasma membrane. Therefore, the same terminals can release glutamate in response to two distinct stimuli: (i) rapid neurotransmission involving depolarisation-induced activation of voltage-gated Ca(2+) channels and (ii) a slower nicotinic activation which does not involve depolarisation or dissipation of the vesicular proton gradient. |
Databáze: | OpenAIRE |
Externí odkaz: |