Singularity of a relativistic vortex beam and proper relativistic observables
Autor: | Yeong Deok Han, Taeseung Choi, Sam Young Cho |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Physics
Angular momentum Multidisciplinary Matter waves and particle beams Dirac (software) lcsh:R lcsh:Medicine Relativistic quantum mechanics 01 natural sciences Article 010305 fluids & plasmas Theoretical particle physics symbols.namesake Singularity Quantum electrodynamics Poincaré group Dirac equation 0103 physical sciences symbols Relativistic electron beam lcsh:Q 010306 general physics lcsh:Science Spin-½ |
Zdroj: | Scientific Reports, Vol 10, Iss 1, Pp 1-13 (2020) Scientific Reports |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-020-64168-0 |
Popis: | We have studied the phase singularity of relativistic vortex beams for two sets of relativistic operators using circulation. One set includes new spin and orbital angular momentum (OAM) operators, which are derived from the parity-extended Poincaré group, and the other set consists of the (usual) Dirac spin and OAM operators. The first set predicts the same singularity in the circulation as in the case of nonrelativistic vortex beams. On the other hand, the second set anticipates that the singularity of the circulation is spin-orientation-dependent and can disappear, especially for a relativistic paraxial electron beam with spin parallel to the propagating direction. These contradistinctive predictions suggest that a relativistic electron beam experiment with spin-polarized electrons could for the first time answer a long-standing fundamental question, i.e., what are the proper relativistic observables, raised from the beginning of relativistic quantum mechanics following the discovery of the Dirac equation. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |