Improved Sieving on Algebraic Curves

Autor: Vanessa Vitse, Alexandre Wallet
Přispěvatelé: Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Polynomial Systems (PolSys), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Kristin Lauter, Francisco Rodríguez-Henríquez, Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Progress in Cryptology--LATINCRYPT 2015
LATINCRYPT 2015, 4th International Conference on Cryptology and Information Security in Latin America
LATINCRYPT 2015, 4th International Conference on Cryptology and Information Security in Latin America, Aug 2015, Guadalajara, Mexico. pp.295-307, ⟨10.1007/978-3-319-22174-8_16⟩
Progress in Cryptology--LATINCRYPT 2015 ISBN: 9783319221731
LATINCRYPT
DOI: 10.1007/978-3-319-22174-8_16⟩
Popis: International audience; The best algorithms for discrete logarithms in Jacobians of algebraic curves of small genus are based on index calculus methods coupled with large prime variations. For hyperelliptic curves, relations are obtained by looking for reduced divisors with smooth Mumford representation (Gaudry); for non-hyperelliptic curves it is faster to obtain relations using special linear systems of divisors (Diem, Diem and Kochinke). Recently, Sarkar and Singh have proposed a sieving technique, inspired by an earlier work of Joux and Vitse, to speed up the relation search in the hyperelliptic case. We give a new description of this technique, and show that this new formulation applies naturally to the non-hyperelliptic case with or without large prime variations. In particular, we obtain a speed-up by a factor approximately 3 for the relation search in Diem and Kochinke's methods.
Databáze: OpenAIRE