Popis: |
Nowadays, fractional derivative is used to model various problems in science and engineering. In this paper, a new numerical method to approximate the generalized Hattaf fractional derivative involving a nonsingular kernel is proposed. This derivative included several forms existing in the literature such as the Caputo–Fabrizio fractional derivative, the Atangana–Baleanu fractional derivative, and the weighted Atangana–Baleanu fractional derivative. The new proposed method is based on Lagrange polynomial interpolation, and it is applied to solve linear and nonlinear fractional differential equations (FDEs). In addition, the error made during the approximation of the FDEs using our proposed method is analyzed. By comparing the approximate and exact solutions, it is noticed that the new numerical method is very efficient and converges very quickly to the exact solution. Furthermore, our proposed numerical method is also applied to nonlinear systems of FDEs in virology. |