Fixed T dynamic panel data estimators with multifactor errors
Autor: | Artūras Juodis, Vasilis Sarafidis |
---|---|
Přispěvatelé: | Quantitative Economics (ASE, FEB), Faculteit Economie en Bedrijfskunde, UvA-Econometrics (ASE, FEB), Research programme EEF |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Economics and Econometrics
factor model media_common.quotation_subject GMM ESTIMATION TIME-SERIES fixed T consistency INITIAL CONDITIONS 01 natural sciences Data modeling 010104 statistics & probability DATA MODELS FACTOR RESIDUALS 0502 economics and business Statistics Covariate Econometrics 0101 mathematics maximum likelihood Dynamic panel data Monte Carlo simulation 050205 econometrics Factor analysis media_common Mathematics Variables 05 social sciences Estimator CRIME Moment (mathematics) CROSS-SECTIONAL DEPENDENCE IV ESTIMATION Sample size determination Panel data |
Zdroj: | Econometric Reviews, 37(8), 893-929. Taylor and Francis Ltd. Econometric Reviews, 37(8), 893-929. Taylor & Francis Group |
ISSN: | 1532-4168 0747-4938 |
DOI: | 10.1080/00927872.2016.1178875 |
Popis: | This article analyzes a growing group of fixed T dynamic panel data estimators with a multifactor error structure. We use a unified notational approach to describe these estimators and discuss their properties in terms of deviations from an underlying set of basic assumptions. Furthermore, we consider the extendability of these estimators to practical situations that may frequently arise, such as their ability to accommodate unbalanced panels and common observed factors. Using a large-scale simulation exercise, we consider scenarios that remain largely unexplored in the literature, albeit being of great empirical relevance. In particular, we examine (i) the effect of the presence of weakly exogenous covariates, (ii) the effect of changing the magnitude of the correlation between the factor loadings of the dependent variable and those of the covariates, (iii) the impact of the number of moment conditions on bias and size for GMM estimators, and finally (iv) the effect of sample size. We apply each of these estimators to a crime application using a panel data set of local government authorities in New South Wales, Australia; we find that the results bear substantially different policy implications relative to those potentially derived from standard dynamic panel GMM estimators. Thus, our study may serve as a useful guide to practitioners who wish to allow for multiplicative sources of unobserved heterogeneity in their model. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |