TiO(2)-Capped Gold Nanorods for Plasmon-Enhanced Production of Reactive Oxygen Species and Photothermal Delivery of Chemotherapeutic Agents

Autor: Jennifer N. Cha, Liangcan He, Albert Harguindey, Chenchen Mao, Andrew P. Goodwin, Michael Brasino, Wounjhang Park
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Popis: Near infrared (NIR)-absorbing noble metal nanostructures are being extensively studied as theranostic agents, in particular for photoacoustic imaging and photothermal therapy. Because of the electric field enhancement at the tips of anisotropic metal nanostructures, positioning photoactive species at these sites can lead to increased energy absorption. Herein, we show the site-specific placement of NIR-active photosensitizers at the ends of gold nanorods (AuNRs) by growing porous TiO(2) caps. The surface plasmon resonance of the AuNRs was carefully tuned to overlap with the exciton absorption of indocyanine green (ICG), a NIR photosensitizer with low quantum yields and poor photostability. In conjugating high amounts of ICG to the TiO(2) caps, increased amounts of singlet oxygen ((1)O(2)) were generated as compared to when ICG was attached to sidewalls of the AuNRs. Because the AuNRs also cause local increases in temperature upon NIR excitation, DNA strands were next attached to the AuNRs sidewalls and loaded with doxorubicin (DOX). We found that the synergistic effect of increased (1)O(2) and photothermal-induced drug delivery led to significant improvements in tumor cell killing. This work demonstrates that with careful design over hybrid nanostructure synthesis, higher levels of tumor therapy may be achieved.
Databáze: OpenAIRE