Generation of static tables in embedded memory with dense scheduling

Autor: Liliana Cucu-Grosjean, Benot Miramond
Přispěvatelé: Equipes Traitement de l'Information et Systèmes (ETIS - UMR 8051), Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Real time and interoperability (TRIO), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Miramond, Benoît
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: DASIP 2010 IEEE Proceedings
Conference on Design and Architectures for Signal and Image Processing
Conference on Design and Architectures for Signal and Image Processing, Oct 2010, France. pp.1
DASIP
BASE-Bielefeld Academic Search Engine
Popis: In a real-time context, designing the software relies on insuring deterministic behavior and predictability. With system controlling several sensors and actuators sampled at different rates the scheduling theory associates the notion of Hyperperiod. It is a major factor of complexity whether for scheduling validation (simulation), or for generation of the corresponding tables in the case of pure off-line schedules. This paper presents a compression method of static real-time schedules and a design flow for generating real-time hardware schedulers. The goal is to minimize the size in embedded memory of the scheduling tables defined at compile-time. This method exploits Idle times in multiprocessors systems in order to identify cyclic patterns called dense schedules. When applied to our case studies, the average compression rate of our technique is near 90% of the initial schedules size.
Databáze: OpenAIRE