Polynomial invariants of graphs on surfaces

Autor: Ross Askanazi, Charles Estill, Jonathan Michel, Patrick Stollenwerk, Sergei Chmutov
Rok vydání: 2013
Předmět:
Zdroj: Quantum Topology. 4:77-90
ISSN: 1663-487X
DOI: 10.4171/qt/35
Popis: For a graph embedded into a surface, we relate many combinatorial parameters of the cycle matroid of the graph and the bond matroid of the dual graph with the topological parameters of the embedding. This will give an expression of the polynomial, defined by M.Las Vergnas in a combinatorial way using matroids as a specialization of the Krushkal polynomial, defined using the symplectic structure in the first homology group of the surface.
Comment: to appear in Quantum Topology
Databáze: OpenAIRE