Polynomial invariants of graphs on surfaces
Autor: | Ross Askanazi, Charles Estill, Jonathan Michel, Patrick Stollenwerk, Sergei Chmutov |
---|---|
Rok vydání: | 2013 |
Předmět: |
Mathematics::Combinatorics
Geometric Topology (math.GT) 05C10 05C31 57M15 57M25 57M27 Matroid Graph Combinatorics Mathematics - Geometric Topology Graphic matroid Dual graph FOS: Mathematics Mathematics - Combinatorics Embedding Combinatorics (math.CO) Geometry and Topology Mathematical Physics Mathematics Symplectic geometry |
Zdroj: | Quantum Topology. 4:77-90 |
ISSN: | 1663-487X |
DOI: | 10.4171/qt/35 |
Popis: | For a graph embedded into a surface, we relate many combinatorial parameters of the cycle matroid of the graph and the bond matroid of the dual graph with the topological parameters of the embedding. This will give an expression of the polynomial, defined by M.Las Vergnas in a combinatorial way using matroids as a specialization of the Krushkal polynomial, defined using the symplectic structure in the first homology group of the surface. Comment: to appear in Quantum Topology |
Databáze: | OpenAIRE |
Externí odkaz: |