Intranasal Nanovaccine Confers Homo- and Hetero-Subtypic Influenza Protection
Autor: | Siling Liu, Jianjun Chen, Xiaowei Zhang, Zongqiang Cui, Zhiping Zhang, Xian-En Zhang, Yanfeng Yao, Ze Chen, Xianxun Sun, Wei Li, Mi Qi |
---|---|
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
Influenza vaccine medicine.medical_treatment 02 engineering and technology Biomaterials Viral Matrix Proteins 03 medical and health sciences Immune system Influenza A Virus H1N1 Subtype Influenza Human medicine Influenza A Virus H9N2 Subtype Humans Nanotechnology General Materials Science Administration Intranasal biology business.industry Immunogenicity Vaccination General Chemistry 021001 nanoscience & nanotechnology Virology 030104 developmental biology Immunization Influenza Vaccines Ferritins biology.protein Nasal administration Antibody 0210 nano-technology business Adjuvant Biotechnology |
Zdroj: | Small (Weinheim an der Bergstrasse, Germany). 14(13) |
ISSN: | 1613-6829 |
Popis: | Cross-protective and non-invasively administered vaccines are attractive and highly desired for the control of influenza. Self-assembling nanotechnology provides an opportunity for the development of vaccines with superior performance. In this study, an intranasal nanovaccine is developed targeting the conserved ectodomain of influenza matrix protein 2(M2e). 3-sequential repeats of M2e (3M2e) is presented on the self-assembling recombinant human heavy chain ferritin (rHF) cage to form the 3M2e-rHF nanoparticle. Intranasal vaccination with 3M2e-rHF nanoparticles in the absence of an adjuvant induces robust immune responses, including high titers of sera M2e-specific IgG antibodies, T-cell immune responses, and mucosal secretory-IgA antibodies in mice. The 3M2e-rHF nanoparticles also confer complete protection against a lethal infection of homo-subtypic H1N1 and hetero-subtypic H9N2 virus. An analysis of the mechanism of protection underlying the intranasal immunization with the 3M2e-rHF nanoparticle indicates that M2e-specific mucosal secretory-IgA and T-cell immune responses may play critical roles in the prevention of infection. The results suggest that the 3M2e-rHF nanoparticle is a promising, needle-free, intranasally administered, cross-protective influenza vaccine. The use of self-assembling nanovaccines could be an ideal strategy for developing vaccines with characteristics such as high immunogenicity, cross-protection, and convenient administration, as well as being economical and suitable for large-scale production. |
Databáze: | OpenAIRE |
Externí odkaz: |