Automated Particle Picking based on Correlation Peak Shape Analysis and Iterative Classification

Autor: Hrabe Thomas, Beck Florian, Nickell Stephan
Jazyk: angličtina
Rok vydání: 2012
Předmět:
DOI: 10.5281/zenodo.1083509
Popis: Cryo-electron microscopy (CEM) in combination with single particle analysis (SPA) is a widely used technique for elucidating structural details of macromolecular assemblies at closeto- atomic resolutions. However, development of automated software for SPA processing is still vital since thousands to millions of individual particle images need to be processed. Here, we present our workflow for automated particle picking. Our approach integrates peak shape analysis to the classical correlation and an iterative approach to separate macromolecules and background by classification. This particle selection workflow furthermore provides a robust means for SPA with little user interaction. Processing simulated and experimental data assesses performance of the presented tools.
{"references":["Frank, J., Three-dimensional electron microscopy of macromolecular\nassemblies: visualization of biological molecules in their native state.\n2006: Oxford University Press.","Adiga, P.S., et al., A binary segmentation approach for boxing ribosome\nparticles in cryo EM micrographs. J Struct Biol, 2004. 145(1-2): p. 142-\n51.","Adiga, U., et al., Particle picking by segmentation: a comparative study\nwith SPIDER-based manual particle picking. J Struct Biol, 2005.\n152(3): p. 211-20.","Sander, B., M.M. Golas, and H. Stark, Advantages of CCD detectors for\nde novo three-dimensional structure determination in single-particle\nelectron microscopy. J Struct Biol, 2005. 151(1): p. 92-105.","Nickell, S., et al., Automated cryoelectron microscopy of \"single\nparticles\" applied to the 26S proteasome. FEBS Lett, 2007. 581(15): p.\n2751-6.","Korinek, A., et al., Computer controlled cryo-electron microscopy -\nTOM(2) a software package for high-throughput applications. J Struct\nBiol, 2011. 175(3): p. 394-405.","Zhu, Y., et al., Automatic particle detection through efficient Hough\ntransforms. IEEE Trans Med Imaging, 2003. 22(9): p. 1053-62.","Sigworth, F.J., Classical detection theory and the cryo-EM particle\nselection problem. J Struct Biol, 2004. 145(1-2): p. 111-22.","Zhu, Y., et al., Automatic particle selection: results of a comparative\nstudy. J Struct Biol, 2004. 145(1-2): p. 3-14.\n[10] Roseman, A.M., Particle finding in electron micrographs using a fast\nlocal correlation algorithm. Ultramicroscopy, 2003. 94(3-4): p. 225-36.\n[11] Kumar, B.V., A. Mahalanobis, and R.D. Juday, Correlation Pattern\nRecognition. 2005: Cambridge University Press.\n[12] Russel, S.J. and P. Norwig, Artificial Intelligence. 1995: Prentice Hall.\n[13] Nicholson, W.V. and R.M. Glaeser, Review: automatic particle\ndetection in electron microscopy. J Struct Biol, 2001. 133(2-3): p. 90-\n101.\n[14] Caprari, R.S., Method of target detection in images by moment analysis\nof correlation peaks. Appl Opt, 1999. 38(8): p. 1317-24.\n[15] Volkmann, N., An approach to automated particle picking from electron\nmicrographs based on reduced representation templates. J Struct Biol,\n2004. 145(1-2): p. 152-6.\n[16] Woolford, D., et al., SwarmPS: rapid, semi-automated single particle\nselection software. J Struct Biol, 2007. 157(1): p. 174-88.\n[17] Duda, R.O., P.E. Hart, and D.G. Stork, Pattern Classification. 2. ed.\n2000: Wiley-Interscience.\n[18] Runkler, T.A., Information Mining. 2000: Vieweg.\n[19] Forsyth, D.A. and J. Ponce, Computer Vision - A modern approach.\n2003: Pearson Studium.\n[20] Nickell, S., et al., TOM software toolbox: acquisition and analysis for\nelectron tomography. J Struct Biol, 2005. 149(3): p. 227-34.\n[21] Forster, F., et al., Classification of cryo-electron sub-tomograms using\nconstrained correlation. J Struct Biol, 2008. 161(3): p. 276-86.\n[22] Nickell, S., et al., Structural analysis of the 26S proteasome by\ncryoelectron tomography. Biochem Biophys Res Commun, 2007.\n353(1): p. 115-20.\n[23] Scheres, S.H., et al., Image processing for electron microscopy singleparticle\nanalysis using XMIPP. Nat Protoc, 2008. 3(6): p. 977-90.\n[24] Saxton, W.O. and W. Baumeister, The correlation averaging of a\nregularly arranged bacterial cell envelope protein. J Microsc, 1982.\n127(Pt 2): p. 127-138.\n[25] Short, J.M., SLEUTH--a fast computer program for automatically\ndetecting particles in electron microscope images. J Struct Biol, 2004.\n145(1-2): p. 100-10.\n[26] Bishop, C.M., Pattern recognition and machine learning. 2009:\nSpringer.\n[27] Bohn, S., et al., Structure of the 26S proteasome from\nSchizosaccharomyces pombe at subnanometer resolution. Proc Natl\nAcad Sci U S A, 2010. 107(49): p. 20992-7."]}
Databáze: OpenAIRE