Mechanical Durability of Flexible Printed Circuit Boards Containing Thin Coverlays Fabricated with Poly(Amide-Imide-Urethane)/Epoxy Interpenetrating Networks

Autor: Myong Jae Yoo, Chan-Jae Lee, Jeongah Kim, Youngmin Kim, Seong Dae Park, Bo-Young Kim, Ji Hun Seo
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Micromachines
Volume 12
Issue 8
Micromachines, Vol 12, Iss 943, p 943 (2021)
ISSN: 2072-666X
DOI: 10.3390/mi12080943
Popis: Because electronics are becoming flexible, the demand for techniques to manufacture thin flexible printed circuit boards (FPCBs) has increased. Conventional FPCBs are fabricated by attaching a coverlay film (41 μm) onto copper patterns/polyimide (PI) film to produce the structure of coverlay/Cu patterns/PI film. Given that the conventional coverlay consists of two layers of polyimide film and adhesive, its thickness must be reduced to generate thinner FPCBs. In this study, we fabricated 25-μm-thick poly(amide-imide-urethane)/epoxy interpenetrating networks (IPNs) to replace the thick conventional coverlay. Poly(amide-imide-urethane) (PAIU) was synthesized by reacting isocyanate-capped polyurethane with trimellitic anhydride and then mixed with epoxy resin to produce PAIU/epoxy IPNs after curing. Thanks to the soft segments of polyurethane, the elongation of PAIU/epoxy IPNs increased with increasing PAIU content and reached over 200%. After confirming the excellent thermal stability and chemical resistance of the PAIU/epoxy IPNs, we fabricated FPCBs by equipping them as coverlays. The mechanical durability of the FPCBs was evaluated through an MIT folding test, and the FPCB fabricated with PAIU/ep-2 was stable up to 164 folding cycles because of the balanced mechanical properties.
Databáze: OpenAIRE