Invariant higher-order variational problems
Autor: | François Gay-Balmaz, Tudor S. Ratiu, Darryl D. Holm, David M. Meier, François-Xavier Vialard |
---|---|
Přispěvatelé: | CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Department of Mathematics [Imperial College London], Imperial College London, Section de Mathématiques and Bernoulli Center, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL) |
Rok vydání: | 2012 |
Předmět: |
Splines
Pure mathematics [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] Complex system Geometry FOS: Physical sciences 01 natural sciences Lie Quadratics Mathematics - Analysis of PDEs [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] 0502 economics and business Tangent space FOS: Mathematics Cubics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] 0101 mathematics Invariant (mathematics) Mathematical Physics Reduction Mathematics Template matching 010102 general mathematics 05 social sciences Lie group Statistical and Nonlinear Physics Geodesic-Flows Mathematical Physics (math-ph) Nonlinear Sciences - Chaotic Dynamics 16. Peace & justice Computational anatomy [NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD] Cotangent bundle Metrics Diffeomorphism Chaotic Dynamics (nlin.CD) 050203 business & management [PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis Statistics and Probability [physics.data-an] Analysis of PDEs (math.AP) |
Zdroj: | Communications in Mathematical Physics Communications in Mathematical Physics, Springer Verlag, 2012, 309 (2), pp.413-458. ⟨10.1007/s00220-011-1313-y⟩ Communications in Mathematical Physics, 2012, 309 (2), pp.413-458. ⟨10.1007/s00220-011-1313-y⟩ |
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-011-1313-y |
Popis: | We investigate higher-order geometric $k$-splines for template matching on Lie groups. This is motivated by the need to apply diffeomorphic template matching to a series of images, e.g., in longitudinal studies of Computational Anatomy. Our approach formulates Euler-Poincar\'e theory in higher-order tangent spaces on Lie groups. In particular, we develop the Euler-Poincar\'e formalism for higher-order variational problems that are invariant under Lie group transformations. The theory is then applied to higher-order template matching and the corresponding curves on the Lie group of transformations are shown to satisfy higher-order Euler-Poincar\'{e} equations. The example of SO(3) for template matching on the sphere is presented explicitly. Various cotangent bundle momentum maps emerge naturally that help organize the formulas. We also present Hamiltonian and Hamilton-Ostrogradsky Lie-Poisson formulations of the higher-order Euler-Poincar\'e theory for applications on the Hamiltonian side. Comment: 46 pages, 8 figures, First version -- comments welcome! |
Databáze: | OpenAIRE |
Externí odkaz: |