Characterization of a Powdery Mildew Resistance Gene in Wheat Breeding Line 10V-2 and Its Application in Marker-Assisted Selection

Autor: Guohao Han, Yunfeng Xu, Yuan Sheng, Shuoshuo Liang, Liping Song, Hongxing Xu, Pengtao Ma, Xiaotian Zhang, Diaoguo An
Rok vydání: 2019
Předmět:
Zdroj: Plant disease. 102(5)
ISSN: 0191-2917
Popis: Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a serious disease of wheat (Triticum aestivum L.) throughout the world. Host resistance is the most effective and preferred means for managing this disease. Line 10V-2, a wheat breeding line with superior agronomic performance, shows broad-spectrum seedling resistance to powdery mildew. Genetic analysis demonstrated that its resistance was controlled by a single dominant gene, tentatively designated Pm10V-2. This gene was localized near the documented Pm2 locus on chromosome 5DS using the simple sequence repeat (SSR) marker Cfd81. To saturate the marker map of Pm10V-2, more markers were developed using bulked segregant RNA-Seq. Two single-nucleotide polymorphism (SNP) markers (Swgi047 and Swgi064), three expressed sequence tag markers (Swgi007, Swgi029, and Swgi038), and one SSR marker (Swgi066) were polymorphic between the resistant and susceptible bulks and showed tightly linked to the Pm10V-2 gene. Pm10V-2 was flanked by the new developed markers Swgi064 and Swgi066 at genetic distances of 0.4 and 1.2 centimorgans (cM), respectively, and cosegregated with Swgi007 and Swgi038. The homologous sequence of Pm2a was cloned from 10V-2 based on a recent study. Although the sequence cloned from 10V-2 was completely identical to that of the reported Pm2a-related gene, they did not cosegregate but were separated at a genetic distance of 1.6 cM, indicating that Pm10V-2 was different from the reported of Pm2a-related gene. When inoculated with multiple B. graminis f. sp. tritici isolates, Pm10V-2 had a significantly different resistance spectrum from Pm2a and other powdery mildew (Pm) resistance genes at or near the Pm2 locus. Therefore, Pm10V-2 may be a new Pm2 allele or Pm2-linked gene. To use Pm10V-2 in marker-assisted selection (MAS) breeding, seven markers applicable for MAS were confirmed, including three newly developed markers (Swgi029, Swgi038, and Swgi064) in the present work. Using these markers, a great number of resistant lines with desirable agronomic performance were selected from crosses involving 10V-2, including the breeding line KM5016, which has been entered in the Regional trials in Hebei Province, China.
Databáze: OpenAIRE