Narrowing the Gap Between QoS Metrics and Web QoE Using Above-the-fold Metrics

Autor: Diego Neves da Hora, Vassilis Christophides, Renata Teixeira, Dario Rossi, Alemnew Sheferaw Asrese
Přispěvatelé: Neves da Hora, Diego, Comprendre et diagnostiquer les dégradations des communications de bout en bout dans l'Internet - - BottleNet2015 - ANR-15-CE25-0013 - AAPG2015 - VALID, Département Informatique et Réseaux (INFRES), Télécom ParisTech, Laboratory of Information, Network and Communication Sciences (LINCS), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT)-Sorbonne Université (SU), Aalto University, Middleware on the Move (MIMOVE), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), University of Crete [Heraklion] (UOC), Inria Project Lab BetterNet BetterNet, ANR-15-CE25-0013,BottleNet,Comprendre et diagnostiquer les dégradations des communications de bout en bout dans l'Internet(2015), Beverly, Robert, Smaragdakis, Georgios, Feldmann, Anja, Telecom ParisTech, Department of Communications and Networking, INRIA Paris-Rocquencourt, Aalto-yliopisto
Rok vydání: 2018
Předmět:
Zdroj: Passive and Active Measurement ISBN: 9783319764801
PAM
PAM 2018-International Conference on Passive and Active Network Measurement
PAM 2018-International Conference on Passive and Active Network Measurement, Mar 2018, Berlin, Germany. pp.1-13
DOI: 10.1007/978-3-319-76481-8_3
Popis: International audience; Page load time (PLT) is still the most common application Quality of Service (QoS) metric to estimate the Quality of Experience (QoE) of Web users. Yet, recent literature abounds with proposals for alternative metrics (e.g., Above The Fold, SpeedIndex and variants) that aim at better estimating user QoE. The main purpose of this work is thus to thoroughly investigate a mapping between established and recently proposed objective metrics and user QoE. We obtain ground truth QoE via user experiments where we collect and analyze 3,400 Web accesses annotated with QoS metrics and explicit user ratings in a scale of 1 to 5, which we make available to the community. In particular, we contrast domain expert models (such as ITU-T and IQX) fed with a single QoS metric, to models trained using our ground-truth dataset over multiple QoS metrics as features. Results of our experiments show that, albeit very simple, expert models have a comparable accuracy to machine learning approaches. Furthermore, the model accuracy improves considerably when building per-page QoE models, which may raise scalability concerns as we discuss.
Databáze: OpenAIRE