Stochastic approximation of quasi-stationary distributions on compact spaces and applications

Autor: Bertrand Cloez, Michel Benaïm, Fabien Panloup
Přispěvatelé: Institut de Mathématiques (UNINE), Université de Neuchâtel (UNINE), Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA), Laboratoire Angevin de Recherche en Mathématiques (LAREMA), Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), PANORisk, Institut de Mathematiques, SNF : 200020/149871, 200021/175728
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Statistics and Probability
reinforced random walks
random perturba- tions of dynamical systems
Euler scheme
Quasi-stationary distributions
Boundary (topology)
Markov process
Stochastic approximation
01 natural sciences
Measure (mathematics)
010104 statistics & probability
symbols.namesake
Position (vector)
stochastic approximation
spectral gap
Secondary 34F05
FOS: Mathematics
random perturba-tions of dynamical systems
Applied mathematics
0101 mathematics
60J20
Mathematics
60J60
Euler scheme AMS-MSC 65C20
Markov chain
010102 general mathematics
Probability (math.PR)
random perturbations of dynamical systems
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Compact space
34F05
symbols
60J10
Spectral gap
65C20
Statistics
Probability and Uncertainty

extinction rate
60B12
Mathematics - Probability
Zdroj: Annals of Applied Probability
Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2018, 28 (4), pp.2370-2416
Ann. Appl. Probab. 28, no. 4 (2018), 2370-2416
Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2018, 28 (4), pp.2370-2416. ⟨10.1214/17-AAP1360⟩
ISSN: 1050-5164
2168-8737
DOI: 10.1214/17-AAP1360⟩
Popis: International audience; In the continuity of a recent paper ([6]), dealing with finite Markov chains, this paper proposes and analyzes a recursive algorithm for the approximation of the quasi-stationary distribution of a general Markov chain living on a compact metric space killed in finite time. The idea is to run the process until extinction and then to bring it back to life at a position randomly chosen according to the (possibly weighted) empirical occupation measure of its past positions. General conditions are given ensuring the convergence of this measure to the quasi-stationary distribution of the chain. We then apply this method to the numerical approximation of the quasi-stationary distribution of a diffusion process killed on the boundary of a compact set and to the estimation of the spectral gap of irreducible Markov processes. Finally, the sharpness of the assumptions is illustrated through the study of the algorithm in a non-irreducible setting.
Databáze: OpenAIRE