Towards behavior by design: A case study on corrugated architectures

Autor: Rémy Dendievel, Damien Fabrègue, Emeric Plancher, Pierre Lhuissier, L. Héraud, Guilhem Martin, Jean-Jacques Blandin
Přispěvatelé: Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Materials and Design
Materials and Design, Elsevier, 2019, 166, pp.107604. ⟨10.1016/j.matdes.2019.107604⟩
Materials & Design, Vol 166, Iss, Pp-(2019)
ISSN: 0264-1275
Popis: A design strategy, referred to as behavior by design, was introduced to develop novel architectured materials starting from their expected stress-strain response. Target behaviors in this strategy have unusual shapes that provide new functions to the material. Here, a numerical toolbox was employed to predict the geometry of metal tensile samples with a corrugated gauge section, given the expected characteristics of their stress-strain response. A multiscale approach, based on a finite element model, was used to construct characteristic points and indices on the macroscopic stress-strain curves to select the relevant input geometrical parameters. Additive manufacturing (electron beam melting) was employed to build several predicted geometries in Ti-6Al-4V titanium alloy. Mechanical testing revealed a good agreement between the experimental and predicted behaviors with limited difference in strain (0.8%) and stress (50 MPa). Shape variations such as local thickness fluctuations were identified using X-ray tomography as a source of mismatch between simulations and experiments. The ability to control the whole shape of unusual stress-strain curves is expected to bring new exciting functionalities to architectured materials. Keywords: Behavior by design, Additive manufacturing, Architectured materials, Strain hardening, X-ray tomography
Databáze: OpenAIRE