Class Distance Weighted Cross-Entropy Loss for Ulcerative Colitis Severity Estimation

Autor: Gorkem Polat, Ilkay Ergenc, Haluk Tarik Kani, Yesim Ozen Alahdab, Ozlen Atug, Alptekin Temizel
Přispěvatelé: Polat G., Ergenc I., KANİ H. T. , ÖZEN ALAHDAB Y., ATUĞ Ö., TEMİZEL A.
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Radiology
Nuclear Medicine and Imaging

BİLGİSAYAR BİLİMİ
İNTERDİSİPLİNER UYGULAMALAR

Mühendislik
ENGINEERING
Sağlık Bilimleri
Clinical Medicine (MED)
Bilgisayar Grafikleri ve Bilgisayar Destekli Tasarım
Computer Science (miscellaneous)
Radyoloji
Nükleer Tıp ve Görüntüleme

Klinik Tıp (MED)
RADYOLOJİ
NÜKLEER TIP ve MEDİKAL GÖRÜNTÜLEME

MÜHENDİSLİK
BİYOMEDİKAL

Bilgisayar Bilimi Uygulamaları
Klinik Tıp
Radiological and Ultrasound Technology
Computer Sciences
General Engineering
Biyomedikal Mühendisliği
COMPUTER SCIENCE
INTERDISCIPLINARY APPLICATIONS

Bilgisayar Grafiği
Computer Graphics and Computer-Aided Design
Tıp
Computer Science Applications
Bilgisayar Bilimi (çeşitli)
Physical Sciences
Ordinal regression
Medicine
Engineering and Technology
Bilgisayar Bilimi
Medical imaging
ENGINEERING
BIOMEDICAL

Nükleer Tıp
General Computer Science
Biomedical Engineering
Mühendislik (çeşitli)
Bioengineering
Yer Bilimlerinde Bilgisayarlar
VALIDATION
Mayo endoscopic score
Genel Mühendislik
Health Sciences
Computer Graphics
Bilgisayar Bilimleri
Computers in Earth Sciences
Engineering
Computing & Technology (ENG)

Genel Bilgisayar Bilimi
Engineering (miscellaneous)
Internal Medicine Sciences
Mühendislik
Bilişim ve Teknoloji (ENG)

Deep learning
Dahili Tıp Bilimleri
COMPUTER SCIENCE
CLINICAL MEDICINE
Computer-aided diagnosis
Biyomühendislik
Fizik Bilimleri
Ulcerative colitis
Radyoloji ve Ultrason Teknolojisi
Nuclear medicine
Mühendislik ve Teknoloji
RADIOLOGY
NUCLEAR MEDICINE & MEDICAL IMAGING
Zdroj: Medical Image Understanding and Analysis ISBN: 9783031120527
Popis: In scoring systems used to measure the endoscopic activity of ulcerative colitis, such as Mayo endoscopic score or Ulcerative Colitis Endoscopic Index Severity, levels increase with severity of the disease activity. Such relative ranking among the scores makes it an ordinal regression problem. On the other hand, most studies use categorical cross-entropy loss function to train deep learning models, which is not optimal for the ordinal regression problem. In this study, we propose a novel loss function, class distance weighted cross-entropy (CDW-CE), that respects the order of the classes and takes the distance of the classes into account in calculation of the cost. Experimental evaluations show that models trained with CDW-CE outperform the models trained with conventional categorical cross-entropy and other commonly used loss functions which are designed for the ordinal regression problems. In addition, the class activation maps of models trained with CDW-CE loss are more class-discriminative and they are found to be more reasonable by the domain experts.
Databáze: OpenAIRE