Efficiently Computing Real Roots of Sparse Polynomials
Autor: | Michael Sagraloff, Gorav Jindal |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Computer Science - Symbolic Computation
FOS: Computer and information sciences Discrete mathematics Real roots Efficient algorithm Approximations of π 010102 general mathematics 010103 numerical & computational mathematics Disjoint sets Symbolic Computation (cs.SC) Symbolic computation 01 natural sciences Oracle Combinatorics Integer ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION F.2.1 0101 mathematics Sparse polynomial Mathematics |
Zdroj: | ISSAC |
Popis: | We propose an efficient algorithm to compute the real roots of a sparse polynomial $f\in\mathbb{R}[x]$ having $k$ non-zero real-valued coefficients. It is assumed that arbitrarily good approximations of the non-zero coefficients are given by means of a coefficient oracle. For a given positive integer $L$, our algorithm returns disjoint disks $\Delta_{1},\ldots,\Delta_{s}\subset\mathbb{C}$, with $s |
Databáze: | OpenAIRE |
Externí odkaz: |