Numerical integration in celestial mechanics: a case for contact geometry
Autor: | Marcello Seri, Federico Zadra, Mats Vermeeren, Alessandro Bravetti |
---|---|
Přispěvatelé: | Dynamical Systems, Geometry & Mathematical Physics |
Rok vydání: | 2019 |
Předmět: |
Class (set theory)
math.NA 010504 meteorology & atmospheric sciences Dynamical systems theory Contact geometry math-ph FOS: Physical sciences 01 natural sciences 34A26 symbols.namesake math.MP Kepler problem 0103 physical sciences FOS: Mathematics Point (geometry) 65D30 Mathematics - Numerical Analysis 010303 astronomy & astrophysics cs.NA Mathematical Physics 0105 earth and related environmental sciences Physics Earth and Planetary Astrophysics (astro-ph.EP) Applied Mathematics Astronomy and Astrophysics Numerical Analysis (math.NA) Mathematical Physics (math-ph) 65D30 34K28 34A26 Celestial mechanics Numerical integration Computational Mathematics Classical mechanics 34K28 Space and Planetary Science Modeling and Simulation astro-ph.EP symbols Focus (optics) Astrophysics - Earth and Planetary Astrophysics |
Zdroj: | Celestial Mechanics & Dynamical Astronomy, 132(1):7 |
ISSN: | 0923-2958 |
DOI: | 10.48550/arxiv.1909.02613 |
Popis: | Several dynamical systems of interest in celestial mechanics can be written in the form of a Newton equation with time-dependent damping, linear in the velocities. For instance, the modified Kepler problem, the spin-orbit model and the Lane-Emden equation all belong to such class. In this work we start an investigation of these models from the point of view of contact geometry. In particular we focus on the (contact) Hamiltonisation of these models and on the construction of the corresponding geometric integrators. Comment: Published in Celestial Mechanics and Dynamical Astronomy |
Databáze: | OpenAIRE |
Externí odkaz: |