Numerical integration in celestial mechanics: a case for contact geometry

Autor: Marcello Seri, Federico Zadra, Mats Vermeeren, Alessandro Bravetti
Přispěvatelé: Dynamical Systems, Geometry & Mathematical Physics
Rok vydání: 2019
Předmět:
Class (set theory)
math.NA
010504 meteorology & atmospheric sciences
Dynamical systems theory
Contact geometry
math-ph
FOS: Physical sciences
01 natural sciences
34A26
symbols.namesake
math.MP
Kepler problem
0103 physical sciences
FOS: Mathematics
Point (geometry)
65D30
Mathematics - Numerical Analysis
010303 astronomy & astrophysics
cs.NA
Mathematical Physics
0105 earth and related environmental sciences
Physics
Earth and Planetary Astrophysics (astro-ph.EP)
Applied Mathematics
Astronomy and Astrophysics
Numerical Analysis (math.NA)
Mathematical Physics (math-ph)
65D30
34K28
34A26

Celestial mechanics
Numerical integration
Computational Mathematics
Classical mechanics
34K28
Space and Planetary Science
Modeling and Simulation
astro-ph.EP
symbols
Focus (optics)
Astrophysics - Earth and Planetary Astrophysics
Zdroj: Celestial Mechanics & Dynamical Astronomy, 132(1):7
ISSN: 0923-2958
DOI: 10.48550/arxiv.1909.02613
Popis: Several dynamical systems of interest in celestial mechanics can be written in the form of a Newton equation with time-dependent damping, linear in the velocities. For instance, the modified Kepler problem, the spin-orbit model and the Lane-Emden equation all belong to such class. In this work we start an investigation of these models from the point of view of contact geometry. In particular we focus on the (contact) Hamiltonisation of these models and on the construction of the corresponding geometric integrators.
Comment: Published in Celestial Mechanics and Dynamical Astronomy
Databáze: OpenAIRE