Thermal control of nucleation and propagation transition stresses in discrete lattices with non-local interactions and non-convex energy
Autor: | Luca Bellino, Giuseppe PUGLISI, Giuseppe Florio, Andrea Cannizzo, Stefano Giordano |
---|---|
Přispěvatelé: | Politecnico di Bari, Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN (AIMAN-FILMS - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Istituto Nazionale di Fisica Nucleare, sezione di Bari (INFN, sezione di Bari), Istituto Nazionale di Fisica Nucleare (INFN), LB, GF and GP have been supported by the Italian Ministry MIUR-PRIN project Mathematics of active materials: From mechanobiology to smart devices (2017KL4EF3) and by ‘Gruppo Nazionale per la Fisica Matematica’ (GNFM) under ‘Istituto Nazionale di Alta Matematica’ (INdAM). GP and GF are supported by the Italian Ministry MISE through the project RAEE SUD-PVP. GF is also supported by ‘Istituto Nazionale di Fisica Nucleare’ (INFN) through the project QUANTUM, by the FFABR research grant (MIUR) and the PON ‘S.I.ADD.’ AC and SG have been supported by Central Lille and Region Hauts-de-France under project MiBaMs. |
Rok vydání: | 2022 |
Předmět: |
statistical mechanics of bistable systems
nanowires Condensed Matter - Mesoscale and Nanoscale Physics Statistical Mechanics (cond-mat.stat-mech) [PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] Mesoscale and Nanoscale Physics (cond-mat.mes-hall) General Physics and Astronomy FOS: Physical sciences phase transformations [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] configurational transitions Condensed Matter - Statistical Mechanics |
Zdroj: | The European Physical Journal Plus The European Physical Journal Plus, 2022, 137 (5), pp.569. ⟨10.1140/epjp/s13360-022-02790-9⟩ |
ISSN: | 2190-5444 |
DOI: | 10.48550/arxiv.2202.10743 |
Popis: | International audience; Non-local and non-convex energies represent fundamental interacting effects regulating the complex behavior of many systems in biophysics and materials science. We study one-dimensional, prototypical schemes able to represent the behavior of several biomacromolecules and the phase transformation phenomena in solid mechanics. To elucidate the effects of thermal fluctuations on the non-convex non-local behavior of such systems, we consider three models of different complexity relying on thermodynamics and statistical mechanics: (i) an Ising-type scheme with an arbitrary temperature-dependent number of interfaces between different domains, (ii) a zipper model with a single interface between two evolving domains, and (iii) an approximation based on the stationary phase method. In all three cases, we study the system under both isometric condition (prescribed extension, matching with the Helmholtz ensemble of the statistical mechanics) and isotensional condition (applied force, matching with the Gibbs ensemble). Interestingly, in the Helmholtz ensemble the analysis shows the possibility of interpreting the experimentally observed thermal effects with the theoretical force–extension relation characterized by a temperature-dependent force plateau (Maxwell stress) and a force peak (nucleation stress). We obtain explicit relations for the configurational properties of the system as well (expected values of the phase fractions and number of interfaces). Moreover, we are able to prove the equivalence of the two thermodynamic ensembles in the thermodynamic limit. We finally discuss the comparison with data from the literature showing the efficiency of the proposed model in describing known experimental effects. |
Databáze: | OpenAIRE |
Externí odkaz: |