Translating solitons to flows by powers of the Gaussian curvature in Riemannian products
Autor: | Ronaldo Freire de Lima |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Archiv der Mathematik. 120:437-448 |
ISSN: | 1420-8938 0003-889X |
DOI: | 10.1007/s00013-023-01845-2 |
Popis: | We consider translating solitons to flows by positive powers $\alpha$ of the Gaussian curvature -- called $K^\alpha$-flows -- in Riemannian products $M\times\mathbb R.$ We prove that, when $M$ is the Euclidean space $\mathbb R^n,$ the sphere $\mathbb S^n,$ or one of the hyperbolic spaces $\mathbb{H}_{\mathbb F}^m,$ there exist complete rotational translating solitons to $K^\alpha$-flow in $M\times\mathbb R$ for certain values of $\alpha.$ |
Databáze: | OpenAIRE |
Externí odkaz: |