Translating solitons to flows by powers of the Gaussian curvature in Riemannian products

Autor: Ronaldo Freire de Lima
Rok vydání: 2023
Předmět:
Zdroj: Archiv der Mathematik. 120:437-448
ISSN: 1420-8938
0003-889X
DOI: 10.1007/s00013-023-01845-2
Popis: We consider translating solitons to flows by positive powers $\alpha$ of the Gaussian curvature -- called $K^\alpha$-flows -- in Riemannian products $M\times\mathbb R.$ We prove that, when $M$ is the Euclidean space $\mathbb R^n,$ the sphere $\mathbb S^n,$ or one of the hyperbolic spaces $\mathbb{H}_{\mathbb F}^m,$ there exist complete rotational translating solitons to $K^\alpha$-flow in $M\times\mathbb R$ for certain values of $\alpha.$
Databáze: OpenAIRE