The Borel complexity of von Neumann equivalence

Autor: Inessa Moroz, Asger Törnquist
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Moroz, I & Törnquist, A 2021, ' The Borel complexity of von Neumann equivalence ', Annals of Pure and Applied Logic, vol. 172, no. 5, 102913 . https://doi.org/10.1016/j.apal.2020.102913
DOI: 10.1016/j.apal.2020.102913
Popis: We prove that for a countable discrete group Γ containing a copy of the free group F n , for some 2 ≤ n ≤ ∞ , as a normal subgroup, the equivalence relations of conjugacy, orbit equivalence and von Neumann equivalence of the ergodic a.e. free probability measure preserving actions of Γ are analytic non-Borel equivalence relations in the Polish space of probability measure preserving Γ-actions. As a consequence we obtain that the isomorphism relations in the spaces of separably acting factors of type II 1 , II ∞ and III λ , 0 ≤ λ ≤ 1 , are analytic and not Borel when these spaces are given the Effros Borel structure.
Databáze: OpenAIRE