Tuning the Adsorption Energy of Methanol Molecules Along Ni-N-Doped Carbon Phase Boundaries by the Mott-Schottky Effect for Gas-Phase Methanol Dehydrogenation
Autor: | Xin-Hao Li, Jing-Tan Han, Qiu-Ying Yu, Markus Antonietti, Zhong-Hua Xue, Wei-Jie Feng, Jie-Sheng Chen |
---|---|
Rok vydání: | 2018 |
Předmět: |
Materials science
Hydrogen chemistry.chemical_element General Medicine 02 engineering and technology General Chemistry 010402 general chemistry 021001 nanoscience & nanotechnology Heterogeneous catalysis 01 natural sciences Catalysis 0104 chemical sciences chemistry.chemical_compound Adsorption Chemical engineering chemistry Phase (matter) Dehydrogenation Methanol Absorption (chemistry) 0210 nano-technology |
Zdroj: | Angewandte Chemie International Edition. 57:2697-2701 |
ISSN: | 1433-7851 |
DOI: | 10.1002/anie.201713429 |
Popis: | Engineering the adsorption of molecules on active sites is an integral and challenging part for the design of highly efficient transition-metal-based catalysts for methanol dehydrogenation. A Mott-Schottky catalyst composed of Ni nanoparticles and tailorable nitrogen-doped carbon-foam (Ni/NCF) and thus tunable adsorption energy is presented for highly efficient and selective dehydrogenation of gas-phase methanol to hydrogen and CO even under relatively high weight hourly space velocities (WHSV). Both theoretical and experimental results reveal the key role of the rectifying contact at the Ni/NCF boundaries in tailoring the electron density of Ni species and enhancing the absorption energies of methanol molecules, which leads to a remarkably high turnover frequency (TOF) value (356 mol methanol mol-1 Ni h-1 at 350 °C), outpacing previously reported bench-marked transition-metal catalysts 10-fold. |
Databáze: | OpenAIRE |
Externí odkaz: |