Optical design and modelling of the QUBIC instrument, a next-generation quasi-optical bolometric interferometer for cosmology

Autor: A. Ghribi, L. Montier, D. Cammileri, D. Burke, L. Grandsire, J. Brossard, Peter T. Timbie, J. A. Murphy, Créidhe O'Sullivan, Giampaolo Pisano, N. Bleurvacq, J. C. Hamilton, P. Battaglia, J. Kaplan, Emory F. Bunn, G. Bordier, Marco Bersanelli, Alessandro Schillaci, Mario Zannoni, M. Giard, J.-Ph. Bernard, S. Scully, B. Bélier, J. Lande, O. Rigaut, T. Decourcelle, Giuseppe D'Alessandro, M.-A. Bigot-Sazy, A. Mennella, D. Buzi, A. Gault, Cristian Franceschet, M. Piat, O. Perdereau, D. Prêle, D. Bennet, Victor Haynes, L. Dumoulin, S. Banfi, J. Martino, F. Voisin, Lucio Piccirillo, D. Viganò, Sophie Henrot-Versille, M. W. Ng, Y. Giraud-Héraud, Massimo Gervasi, Andrei Korotkov, Marcin Gradziel, F. Piacentini, Maria Salatino, P. Chanial, Damien Rambaud, Jonathan Aumont, Simon J. Melhuish, A. Baù, N. Holtzer, M. De Petris, Mark McCulloch, M. Stolpovskiy, F. Del Torto, S. Marnieros, Bruno Maffei, P. de Bernardis, F. Pajot, Elia S. Battistelli, D. Gayer, Francesco Cavaliere, Gregory S. Tucker, L. Bergé, Alessandro Coppolecchia, A. Lowitz, M. Tristram, C. Perbost, B. Watson, R. Puddu, F. Couchot, D. Néel, A. Passerini, A. Tartari, C. Chapron, Silvia Masi
Přispěvatelé: Holland, WS, Scully, S, Burke, D, O'Sullivan, C, Gayer, D, Gradziel, M, Murphy, J, De Petris, M, Buzi, D, Zannoni, M, Mennella, A, Gervasi, M, Tartari, A, Maffei, B, Aumont, J, Banfi, S, Battaglia, P, Battistelli, E, Bau', A, Bélier, B, Bennet, D, Bergé, L, Bernard, J, Bersanelli, M, Bigot Sazy, M, Bleurvacq, N, Bordier, G, Brossard, J, Bunn, E, Cammileri, D, Cavaliere, F, Chanial, P, Chapron, C, Coppolecchia, A, Couchot, F, D'Alessandro, G, De Bernardis, P, Decourcelle, T, Del Torto, F, Dumoulin, L, Franceschet, C, Gault, A, Ghribi, A, Giard, M, Giraud Héraud, Y, Grandsire, L, Hamilton, J, Haynes, V, Henrot Versillé, S, Holtzer, N, Kaplan, J, Korotkov, A, Lande, J, Lowitz, A, Marnieros, S, Martino, J, Masi, S, Mcculloch, M, Melhuish, S, Montier, L, Néel, D, Ng, M, Pajot, F, Passerini, A, Perbost, C, Perdereau, O, Piacentini, F, Piat, M, Piccirillo, L, Pisano, G, Prêle, D, Puddu, R, Rambaud, D, Rigaut, O, Salatino, M, Schillaci, A, Stolpovskiy, M, Timbie, P, Tristram, M, Tucker, G, Viganò, D, Voisin, F, Watson, B
Rok vydání: 2016
Předmět:
Bolometric interferometry
QUBIC
Aperture
Cosmic microwave background
Condensed Matter Physic
Astrophysics::Cosmology and Extragalactic Astrophysics
CMB
01 natural sciences
Cosmology
law.invention
010309 optics
Telescope
FIS/05 - ASTRONOMIA E ASTROFISICA
symbols.namesake
Optics
law
0103 physical sciences
Astronomical interferometer
Stokes parameters
Electrical and Electronic Engineering
Planck
010303 astronomy & astrophysics
Physics
business.industry
Electronic
Optical and Magnetic Material

Astrophysics::Instrumentation and Methods for Astrophysics
B-modes
Electronic
Optical and Magnetic Materials

Condensed Matter Physics
Computer Science Applications1707 Computer Vision and Pattern Recognition
Applied Mathematics
Applied Mathematic
Interferometry
FIS/01 - FISICA SPERIMENTALE
B-mode
symbols
business
Zdroj: SPIE Proceedings.
ISSN: 0277-786X
DOI: 10.1117/12.2231717
Popis: Big Bang cosmologies predict that the cosmic microwave background (CMB) contains faint temperature and polarisation anisotropies imprinted in the early universe. ESA's PLANCK satellite has already measured the temperature anisotropies1 in exquisite detail; the next ambitious step is to map the primordial polarisation signatures which are several orders of magnitude lower. Polarisation E-modes have been measured2 but the even-fainter primordial B-modes have so far eluded detection. Their magnitude is unknown but it is clear that a sensitive telescope with exceptional control over systematic errors will be required. QUBIC3 is a ground-based European experiment that aims to exploit the novel concept of bolometric interferometry in order to measure B-mode polarisation anisotropies in the CMB. Beams from an aperture array of corrugated horns will be combined to form a synthesised image of the sky Stokes parameters on two focal planes: one at 150 GHz the other at 220 GHz. In this paper we describe recent optical modelling of the QUBIC beam combiner, concentrating on modelling the instrument point-spread-function and its operation in the 220-GHz band. We show the effects of optical aberrations and truncation as successive components are added to the beam path. In the case of QUBIC, the aberrations introduced by off-axis mirrors are the dominant contributor. As the frequency of operation is increased, the aperture horns allow up to five hybrid modes to propagate and we illustrate how the beam pattern changes across the 25% bandwidth. Finally we describe modifications to the QUBIC optical design to be used in a technical demonstrator, currently being manufactured for testing in 2016.
Databáze: OpenAIRE