Disorder-driven quantum transition in relativistic semimetals: functional renormalization via the porous medium equation

Autor: Andrei A. Fedorenko, Ivan Balog, David Carpentier
Přispěvatelé: Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), ANR-17-CE30-0023,DIRAC3D,Excitations de basse energie dans les semimétaux tridimensionnels de Dirac et de Weyl(2017), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon
Jazyk: angličtina
Rok vydání: 2018
Předmět:
High Energy Physics - Theory
Anderson localization
Functional renormalization group
Electronic structure
Flows in porous media
Quantum criticality
Semimetals

[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
FOS: Physical sciences
General Physics and Astronomy
Fixed point
Gross-Neveu model
Condensed Matter: Electronic Properties
01 natural sciences
010305 fluids & plasmas
renormalization
Renormalization
Gross–Neveu model
Quantum mechanics
0103 physical sciences
density: finite
Functional renormalization group
010306 general physics
Quantum
Mathematical Physics
Physics
etc
fluctuation
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
effect: nonperturbative
Disordered Systems and Neural Networks (cond-mat.dis-nn)
Mathematical Physics (math-ph)
Condensed Matter - Disordered Systems and Neural Networks
Renormalization group
U(N)
[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]
High Energy Physics - Theory (hep-th)
fixed point
Density of states
renormalization group
Zdroj: Phys.Rev.Lett.
Phys.Rev.Lett., 2018, 121 (16), pp.166402. ⟨10.1103/PhysRevLett.121.166402⟩
DOI: 10.1103/PhysRevLett.121.166402⟩
Popis: In the presence of randomness, a relativistic semimetal undergoes a quantum transition towards a diffusive phase. A standard approach relates this transition to the $U(N)$ Gross-Neveu model in the limit of $N \to 0$. We show that the corresponding fixed point is infinitely unstable, demonstrating the necessity to include fluctuations beyond the usual Gaussian approximation. We develop a functional renormalization group method amenable to include these effects and show that the disorder distribution renormalizes following the so-called porous medium equation. We find that the transition is controlled by a nonanalytic fixed point drastically different from that of the $U(N)$ Gross-Neveu model. Our approach provides a unique mechanism of spontaneous generation of a finite density of states and also characterizes the scaling behavior of the broad distribution of fluctuations close to the transition. It can be applied to other problems where nonanalytic effects may play a role, such as the Anderson localization transition.
5+9 pages, 2+3 figures
Databáze: OpenAIRE