Disorder-driven quantum transition in relativistic semimetals: functional renormalization via the porous medium equation
Autor: | Andrei A. Fedorenko, Ivan Balog, David Carpentier |
---|---|
Přispěvatelé: | Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), ANR-17-CE30-0023,DIRAC3D,Excitations de basse energie dans les semimétaux tridimensionnels de Dirac et de Weyl(2017), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
High Energy Physics - Theory
Anderson localization Functional renormalization group Electronic structure Flows in porous media Quantum criticality Semimetals [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] FOS: Physical sciences General Physics and Astronomy Fixed point Gross-Neveu model Condensed Matter: Electronic Properties 01 natural sciences 010305 fluids & plasmas renormalization Renormalization Gross–Neveu model Quantum mechanics 0103 physical sciences density: finite Functional renormalization group 010306 general physics Quantum Mathematical Physics Physics etc fluctuation [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] effect: nonperturbative Disordered Systems and Neural Networks (cond-mat.dis-nn) Mathematical Physics (math-ph) Condensed Matter - Disordered Systems and Neural Networks Renormalization group U(N) [PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] High Energy Physics - Theory (hep-th) fixed point Density of states renormalization group |
Zdroj: | Phys.Rev.Lett. Phys.Rev.Lett., 2018, 121 (16), pp.166402. ⟨10.1103/PhysRevLett.121.166402⟩ |
DOI: | 10.1103/PhysRevLett.121.166402⟩ |
Popis: | In the presence of randomness, a relativistic semimetal undergoes a quantum transition towards a diffusive phase. A standard approach relates this transition to the $U(N)$ Gross-Neveu model in the limit of $N \to 0$. We show that the corresponding fixed point is infinitely unstable, demonstrating the necessity to include fluctuations beyond the usual Gaussian approximation. We develop a functional renormalization group method amenable to include these effects and show that the disorder distribution renormalizes following the so-called porous medium equation. We find that the transition is controlled by a nonanalytic fixed point drastically different from that of the $U(N)$ Gross-Neveu model. Our approach provides a unique mechanism of spontaneous generation of a finite density of states and also characterizes the scaling behavior of the broad distribution of fluctuations close to the transition. It can be applied to other problems where nonanalytic effects may play a role, such as the Anderson localization transition. 5+9 pages, 2+3 figures |
Databáze: | OpenAIRE |
Externí odkaz: |