not available

Autor: Cibele Maria Russo Novelli
Přispěvatelé: Gilberto Alvarenga Paula
Jazyk: portugalština
Rok vydání: 2010
Zdroj: Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Popis: Neste trabalho discutimos o desenvolvimento e a análise de modelos de regressão elípticos não lineares com efeitos mistos, que proporcionam alternativas ao uso da distribuição normal e podem permitir melhores ajustes a dados não lineares correlacionados, em situações de caudas pesadas ou presença de pontos aberrantes, por exemplo, já que, naturalmente, atribuem pesos para cada observação. Nos últimos anos tem havido um crescente interesse pela classe elíptica, que abrange distribuições com caudas leves e pesadas, como a t-Student, logística, exponencial potência, a própria distribuição normal, entre outras. Entretanto, poucos trabalhos podem ser encontrados na literatura considerando modelos elípticos não lineares. Consideramos problemas previamente discutidos sob normalidade e que apresentam pontos aberrantes ou caudas pesadas, que são reanalisados sob o enfoque elíptico a fim de obter estimativas robustas contra pontos aberrantes e modelos com maior aderência aos dados de interesse. Para avaliar componentes de variância consideramos testes do tipo escore propostos por Silvapulle and Silvapulle (1995) utilizando o modelo marginal. Apresentamos também um amplo estudo de sensitividade baseado em técnicas de diagnóstico como análise de resíduos e infruência local (Cook 1986), que agem como ferramentas para a escolha de modelos. Como ilustrações numéricas analisamos conjuntos de dados reais, como por exemplo dados cinéticos e de curvas de crescimento not available
Databáze: OpenAIRE