Isopolymolybdate-Based Cobalt/Nickel Coordination Polymers Constructed by V-Type N-Donor Ligands

Autor: Ya-Jie Shi, Yan Bai, Yamin Li, Ying-Ying Wu, Dong-Bin Dang, Ying Liu, Lin-Lin Chen
Rok vydání: 2021
Předmět:
Zdroj: Inorganic Chemistry. 60:1264-1273
ISSN: 1520-510X
0020-1669
DOI: 10.1021/acs.inorgchem.0c03433
Popis: Four novel isopolymolybdate-based coordination polymers (CPs), constructed from 2,6-bis(1,2,4-triazol-1-yl)pyridine (btp), 1,3-bis(4H-1,2,4-triazol-4-yl)benzene (btb), and 3,5-bis(1-imidazolium)pyridine (bip), have been synthesized under a hydrothermal method: {[Co(btp)(H2O)2(β-Mo8O26)0.5]·3H2O}n (1), [Ni(btp)(H4Mo6O22)0.5]n (2), [Co(btb)(H2O)(β-Mo8O26)0.5]n (3), and {[Co(Hbip)2(H2O)2(γ-Mo8O26)]·6H2O}n (4). Complex 1 exhibits one 3D framework with an unexpected 3-nodal 2,4,6-c net topology containing the 1D {β-Mo8O26}n chains, 6-connected CoII centers, and V-type coordinated btp ligands. The neighboring [Mo6O22]4- anions of complex 2 are bridged by the NiII centers to build one 2D {Ni2(Mo6O22)} network, which is arranged into the 3D framework through the weak π···π stacking interactions. In compound 3, one 3D framework is formed by the adjacent 1D {Co2(btp)2}n chains connected by {β-Mo8O26}n units, which demonstrates a rare 4,6-c fsc topology. In complex 4, one 2D {Co(Hbip)2(γ-Mo8O26)} layer with a (4, 4) network is connected to one 3D hydrogen-bonding framework via N-H···O and O-H···O hydrogen bonds. Magnetic data indicate that complexes 1 and 4 exhibit antiferromagnetic behaviors, whereas complexes 2 and 3 reveal spin-canting magnetic behavior and metamagnetic behavior, respectively. In addition, the proton conductivity of complexes 3 and 4 was investigated, showing that compound 4 has good proton conductivity at 85 °C and a relative humidity of 98% RH.
Databáze: OpenAIRE