Convergence of finite volume scheme for degenerate parabolic problem with zero flux boundary condition

Autor: Mohamed Karimou Gazibo, Boris Andreianov
Přispěvatelé: Technische Universität Berlin (TU), Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB), Université de Bourgogne (UB)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), J. Fuhrmann, M. Ohlberger and Christian Rohde, ANR-11-JS01-0006,CoToCoLa,Thématiques actuelles en lois de conservation(2011)
Rok vydání: 2014
Předmět:
Zdroj: Springer Proceedings in Mathematics and Statistics
Finite Volumes for Complex Applications VII
Finite Volumes for Complex Applications VII, Jun 2014, Berlin, Germany. pp. 303-311, ⟨10.1007/978-3-319-05684-5_29⟩
Springer Proceedings in Mathematics & Statistics ISBN: 9783319056838
DOI: 10.48550/arxiv.1402.5221
Popis: This note is devoted to the study of the finite volume methods used in the discretization of degenerate parabolic-hyperbolic equation with zero-flux boundary condition. The notion of an entropy-process solution, successfully used for the Dirichlet problem, is insufficient to obtain a uniqueness and convergence result because of a lack of regularity of solutions on the boundary. We infer the uniqueness of an entropy-process solution using the tool of the nonlinear semigroup theory by passing to the new abstract notion of integral-process solution. Then, we prove that numerical solution converges to the unique entropy solution as the mesh size tends to 0.
Comment: 8
Databáze: OpenAIRE