Discrepancy of a convex set with zero curvature at one point
Autor: | Bianca Gariboldi |
---|---|
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Mathematics - Number Theory General Mathematics 010102 general mathematics Convex set 0102 computer and information sciences 11H06 42B05 52C07 Curvature 01 natural sciences Omega symbols.namesake Settore MAT/05 - Analisi Matematica 010201 computation theory & mathematics Norm (mathematics) Gaussian curvature symbols FOS: Mathematics Convex body Number Theory (math.NT) 0101 mathematics Mathematics |
DOI: | 10.48550/arxiv.1904.02952 |
Popis: | Let $\Omega \subset \mathbb{R}^{d}$ be a convex body with everywhere positive curvature except at the origin and with the boundary $\partial \Omega$ as the graph of the function $y=|x|^{\gamma}$ in a neighborhood of the origin with $\gamma \geq 2$. We consider the $L^{p}$ norm of the discrepancy with respect to translations and rotations of a dilated copy of the set $\Omega$. |
Databáze: | OpenAIRE |
Externí odkaz: |