Coefficient fields and scalar extension in positive characteristic
Autor: | L. Narvaez-Macarro, M. Fernandez-Lebron |
---|---|
Přispěvatelé: | Universidad de Sevilla. Departamento de Matemática Aplicada I, Universidad de Sevilla. Departamento de álgebra, Universidad de Sevilla. FQM218: Geometria Algebraica, Sistemas Diferenciales y Singularidades, Ministerio de Educación y Ciencia (MEC). España, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER) |
Rok vydání: | 2005 |
Předmět: |
Algebra and Number Theory
Mathematics::Commutative Algebra Scalar (mathematics) Mathematics - Commutative Algebra Commutative Algebra (math.AC) Hasse–Schmidt derivation Coefficient field Hasse-Schmidt derivation Complete local ring 13F25 13N15 13B35 13A35 FOS: Mathematics Perfect field Maximal ideal Commutative algebra Mathematical physics Mathematics |
Zdroj: | idUS. Depósito de Investigación de la Universidad de Sevilla instname |
ISSN: | 0021-8693 |
DOI: | 10.1016/j.jalgebra.2004.11.009 |
Popis: | Let k be a perfect field of positive characteristic, k(t)_{per} the perfect closure of k(t) and A=k[[X_1,...,X_n]]. We show that for any maximal ideal N of A'=k(t)_{per}\otimes_k A, the elements in \hat{A'_N} which are annihilated by the "Taylor" Hasse-Schmidt derivations with respect to the X_i form a coefficient field of \hat{A'_N}. Comment: Final version |
Databáze: | OpenAIRE |
Externí odkaz: |