Constraint satisfaction and semilinear expansions of addition over the rationals and the reals
Autor: | Peter Jonsson, Johan Thapper |
---|---|
Přispěvatelé: | Department of Computer and Information Science - Linköping University, Linköping University (LIU), Laboratoire d'Informatique Gaspard-Monge (LIGM), Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC]
FOS: Computer and information sciences Rational number Computer and Information Sciences Computational complexity theory Constraint satisfaction problems Computer Networks and Communications Semilinear sets Algorithms Computational complexity [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] 0102 computer and information sciences [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] Computational Complexity (cs.CC) 01 natural sciences Theoretical Computer Science Integer 0101 mathematics Time complexity Finite set Constraint satisfaction problem Mathematics Discrete mathematics Applied Mathematics 010102 general mathematics Solution set [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] Data- och informationsvetenskap Computational complexity * Corresponding author Constraint satisfaction Computer Science - Computational Complexity Computational Theory and Mathematics 010201 computation theory & mathematics |
Zdroj: | Journal of Computer and System Sciences Journal of Computer and System Sciences, Elsevier, 2016, 82 (5), pp.912-928. ⟨10.1016/j.jcss.2016.03.002⟩ |
ISSN: | 0022-0000 1090-2724 |
Popis: | A semilinear relation is a finite union of finite intersections of open and closed half-spaces over, for instance, the reals, the rationals, or the integers. Semilinear relations have been studied in connection with algebraic geometry, automata theory, and spatiotemporal reasoning. We consider semilinear relations over the rationals and the reals. Under this assumption, the computational complexity of the constraint satisfaction problem (CSP) is known for all finite sets containing R+={(x,y,z) | x+y=z} 22 pages, 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |