Hot Deformation Behavior of a Beta Metastable TMZF Alloy: Microstructural and Constitutive Phenomenological Analysis
Autor: | Alberto Moreira Jorge, Claudemiro Bolfarini, Virginie Roche, Ana Paula de Bribean Guerra |
---|---|
Přispěvatelé: | Electrochimie Interfaciale et Procédés (EIP), Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI), Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Materials science
constitutive analysis Thermodynamics 02 engineering and technology Flow stress beta metastable dynamic recovering 01 natural sciences [SPI.MAT]Engineering Sciences [physics]/Materials Stress (mechanics) Condensed Matter::Materials Science Hot working 0103 physical sciences TMZF General Materials Science 010302 applied physics Mining engineering. Metallurgy Metals and Alloys TN1-997 Strain rate 021001 nanoscience & nanotechnology spinodal decomposition Deformation mechanism Dynamic recrystallization Hardening (metallurgy) Deformation (engineering) 0210 nano-technology mechanical twinning |
Zdroj: | Metals Metals, MDPI, 2021, 11 (11), pp.1769. ⟨10.3390/met11111769⟩ Metals, Vol 11, Iss 1769, p 1769 (2021) Volume 11 Issue 11 |
ISSN: | 2075-4701 |
DOI: | 10.3390/met11111769⟩ |
Popis: | A metastable beta TMZF alloy was tested by isothermal compression under different conditions of deformation temperature (923 to 1173 K), strain rate (0.172, 1.72, and 17.2 s−1), and a constant strain of 0.8. Stress–strain curves, constitutive constants calculations, and microstructural analysis were performed to understand the alloy’s hot working behavior in regards to the softening and hardening mechanisms operating during deformation. The primary softening mechanism was dynamic recovery, promoting dynamic recrystallization delay during deformation at higher temperatures and low strain rates. Mechanical twinning was an essential deformation mechanism of this alloy, being observed on a nanometric scale. Spinodal decomposition evidence was found to occur during hot deformation. Different models of phenomenological constitutive equations were tested to verify the effectiveness of flow stress prediction. The stress exponent n, derived from the strain-compensated Arrhenius-type constitutive model, presented values that point to the occurrence of internal stress at the beginning of the deformation, related to complex interactions of dislocations and dispersed phases. |
Databáze: | OpenAIRE |
Externí odkaz: |