Synchronizing the dynamics of a single NV spin qubit on a parametrically coupled radio-frequency field through microwave dressing

Autor: Vincent Jacques, Benjamin Pigeau, Eva Dupont-Ferrier, O. Arcizet, Pierre Verlot, S. Rohr
Přispěvatelé: Nano-Optique et Forces (NOF), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Laboratoire Aimé Cotton (LAC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Physical Review Letters
Physical Review Letters, American Physical Society, 2014, 112 (1), pp.010502. ⟨10.1103/PhysRevLett.112.010502⟩
ISSN: 0031-9007
1079-7114
Popis: International audience; A hybrid spin-oscillator system in parametric interaction is experimentally emulated using a single NV spin qubit immersed in a radio frequency (RF) field and probed with a quasi resonant microwave (MW) field. We report on the MW mediated locking of the NV spin dynamics onto the RF field, appearing when the MW driven Rabi precession frequency approaches the RF frequency and for sufficiently large RF amplitudes. These signatures are analog to a phononic Mollow triplet in the MW rotating frame for the parametric interaction and promise to have impact in spin-dependent force detection strategies.
Databáze: OpenAIRE